
Efficient Optimization, Post Training and Inference

Jiawei Zhang

October 16, 2025



Outline

• Optimal First-Order Algorithm for Stochastic Constrained Optimization
• Understanding GRPO as Adaptive Gradient Descent
• Efficient Lossless Inference of Diffusion Language Model

2 / 66



Background

• Consider a generic optimization problem:

min
x∈Rd

f(x).

• Suppose f is bounded below and ℓ-Lipschitz smooth, i.e.,

󰀂∇f(x)−∇f(x′)󰀂 ≤ ℓ󰀂x− x′󰀂.

• Two simple but powerful algorithms: gradient descent and stochastic gradient descent:

• GD: xt+1 = xt − ct∇f(xt)
• SGD: xt+1 = xt − ctg

t, where gt is an unbiased estimator of ∇f(xt) with variance σ.
• First-order algorithms: well-suited for large-scale problems, simple steps, especially SGD

using small batch.

3 / 66



Iteration and Sample Complexity

• For nonconvex problems, Iteration complexity is the number of iterations needed to obtain
an 󰂃-stationary solution:

• Deterministic case: 󰀂∇f(x)󰀂 ≤ 󰂃;
• Stochastic case: E󰀂∇f(x)󰀂 ≤ 󰂃

• For GD, we use ct = 1/ℓ and iteration complexity is O(ℓ/󰂃2).
• For SGD, we choose ct = 󰂃2/ℓσ2 and the sample and iteration complexity are O(ℓσ2/󰂃4).

4 / 66



Natural Open Problems

• We have some natural open questions:

• For constrained optimization problems, can we still achieve O(1/󰂃2) iteration complexity using
first-order methods?

• For stochastic constrained optimization, can we still achieve O(1/󰂃4) sample and iteration
complexity?

• Suppose the Lipschitz smoothness constants are different x, can we use adaptive stepsize to
accelerate?

• These questions are just very natural extension of textbook results.

5 / 66



My Previous Works for Deterministic Constrained Optimization

• Consider constrained optimization
min

x∈X,Ax=b
f(x)

where X is a convex, closed set and easy to project,

• We can design a first-order algorithm, only requiring gradient iteration and projection to X with
O(1/󰂃2) iteration complexity.

• This is shown in [Zhang and Luo 2020, proximal],[Zhang and Luo, 2022, global] and [Zhang et al,
2022, iteration]

• I further work on the problem minx∈X,gi(x)≤0 f(x), where gi, i ∈ [m] is convex, X is convex,
closed and easy to project.

• We show it can be solved by first-order method with O(1/󰂃2) iteration complexity, only requiring
gradient iteration and projection on X.

6 / 66



Stochastic Constrained Optimization

• In the first part of this talk, we design first-order method for stochastic constrained optimization

• We show the optimal sample complexity.

• We also discuss the optimal sample complexity under a variance reduction technique.

7 / 66



Stochastic Smoothed Primal-Dual Algorithms for Nonconvex Optimization
with Linear Inequality Constraints

Ruichuan Huang, Jiawei Zhang, and Ahmet Alacaoglu

8 / 66



Introduction to Stochastic Constrained Optimization

We solve

min
x∈X

Eξ∼Ξ[f(x, ξ)]

s.t. Eζ∼Q[A(ζ)x− b] = 0

where X = Hx ≤ h, for some matrix H and vector h.

• Without loss of generality, we assume X is projection-friendly
• Otherwise, we introduce slack variables to rewrite the constraints to be

{x,w | Ax = b,Hx+ w = h,w ≥ 0} and then the inequality constraints are
projection-friendly

9 / 66



The First Type of Stochastic Oracle

• Assume that for any x, we can pick i.i.d. sample ξ and
• compute the unbiased estimation of ∇f ,Ax− b:

Eξ[󰁥∇f(x; ξ)] = ∇f(x),

Eζ [v(ζ)] = EζA(ζ)x− b,

• Assume that the variance of estimator is bounded by σ2.
• From Arjevani et al. [2023], for unconstrained nonconvex stochastic optimization, the

lower bound of sample complexity under oracle 1 is Ω(󰂃−4)

• Open problem: Can we achieve this lower bound for constrained problems?

10 / 66



The Second Type of Stochastic Oracle

• Sometimes, we can access stronger oracles.
• We assume that for any i.i.d. sample ξ, we access the unbiased estimation of ∇f ,Ax− b

at two different x1, x2:

Eξ[󰁥∇f(xi; ξ)] = ∇f(xi),

Eζ [v(x
i, ζ)] = Axi − b,

and the variance of the estimator is assumed to be bounded by σ2.
• Commonly used assumption for variance reduction, sometimes impractical, e.g., in

federated learning
• Lower bound under this oracle: Ω(1/󰂃3)

• Open problem: Can we achieve this for constrained optimization?

11 / 66



An Example: Federated Learning

• Federated learning: m agents, a central server, objective function of agent i:
fi(x) := Eξ∼Pi

f(x; ξ)

• We minimize f(x) =
󰁓

i fi(x)

• A consensus constrained reformulation: minxi−x0=0,i∈[m]

󰁓
i fi(xi)

• agent i controls xi and the server controls x0

• At any time, agent i only has some probability p to be active, i.e., connected to the server

• If connected we can estimate xi − x0, otherwise 0 ∗ xi − 0 ∗ x0

12 / 66



Continue

• Hence for any x = (x0, x1, · · · , xn), we have an unbiased estimate of x0 − xi

• The first oracle is more practical
• At different times, random sample–the status of connection to server is different
• At time t and t+ 1, the connection is different
• Hence, hard to satisfy oracle 2

13 / 66



Comparison of Methods

Reference Constraint Oracle Complexity Loops Method
Alacaoglu & Wright [2024] Ax = b 2 󰁨O(ε−3) 1 ALM

Alacaoglu & Wright[2024]
E[c(x, ζ)] = 0,
and x ∈ X where
X is easy to project

2 󰁨O(ε−5) 1 Penalty

Lu et al. [2024]
c(x) = 0,
and x ∈ X where
X is easy to project

2 O(ε−3) 1 Penalty

Li et al. [2024]
E[c(x, ζ)] = 0,
and x ∈ X where
X is easy to project

2 O(ε−5) 2 Penalty∗

This work Ax = b,
and x ∈ X is polyhedral 1 O(ε−4) 1 ALM

This work Eζ [A(ζ)x− b(ζ)] = 0,
and x ∈ X is polyhedral 1 O(ε−4) 1 ALM

This work Ax = b,
and x ∈ X is polyhedral 2 O(ε−3) 1 ALM

∗This method is referred to as a penalty method because the penalty parameter is taken to infinity to ensure feasibility,

and dual updates do not contribute in achieving feasibility.
14 / 66



Our Contribution

• We design first-order, single-loop algorithms with constant batch size to solve nonconvex
optimization problems with stochastic constraints

• The algorithm is Lagrangian based, does not require large penalty

• optimal sample complexity O(ε−4) under the first stochastic oracle

• optimal sample complexity O(ε−3) under the second stochastic oracle

15 / 66



Algorithm Design

One influential idea is to use the augmented Lagrangian(AL) method to solve the problem:

Lρ(x,y) = f(x) + 〈Ax− b,y〉+ ρ

2
󰀂Ax− b󰀂2

Then the ALM iteration proceeds for k = 1, 2, · · · by updating

xk+1 ≈ argmin
x∈X

Lρ(x,yk)

yk+1 = yk + η(Axk+1 − b)

However, the ALM may not converge if f is nonconvex

16 / 66



Algorithm Design

• First recall the deterministic case. Consider the deterministic constrained opt:

min
x∈X,Ax=b

f(x)

• Let K(x, y, z) = Lρ(x, y) +
µ
2 󰀂x− z󰀂2

• Dual ascent: yt+1 = yt + α(Axt − b);

• xt+1 = ProjX(xt −∇xK(xt, yt+1, zt));

• zt+1 = zt + β(xt+1 − zt).

17 / 66



Interpretation of the Algorithm

• The algorithm can be regarded as an Inexact GD on the Moreau envelope

• The Moreau envelope of our problem is given as

Ψ(zt) = min
x∈X,Ax=b

󰁱
f(x) +

µ

2
󰀂x− zt󰀂2

󰁲

• By Danskin’s Theorem, the gradient of Ψ(z) is given by

∇zΨ(z) = µ(z − x̄(z))

where x̄(z) = argminx∈X,Ax=b

󰀋
f(x) + µ

2 󰀂x− zt󰀂2
󰀌

• The update of x and y can be viewed as an approximation to x̄(z).

18 / 66



The Potential Function

In the deterministic case (Zhang and Luo [2020]), we can use the following potential function:

Vt = K(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt), where we use

K(x,y, z) = Lρ(x,y) +
µ

2
󰀂x− z󰀂2,

d(y, z) = min
x∈X

Lρ(x,y) +
µ

2
󰀂x− z󰀂2,

Ψ(z) = min
x∈X,Ax=b

󰁱
f(x) +

µ

2
󰀂x− z󰀂2

󰁲
.

• The gradient projection step can reduce K
• The dual ascent step can approximately reduce −d
• The update of z can approximately reduce ψ(z) (Moreau envelope gradient descent).

The potential function Vt is decreasing, then we can show that the convergence of the
algorithm. Denote x∗(y, z) = argminx∈X K(x,y, z), we have

Vt − Vt+1 ≥
1

4τ
󰀂xt − xt+1󰀂2 +

η

2
󰀂Ax∗(yt+1, zt)− b󰀂2 + µ

3β
󰀂zt − zt+1󰀂2.

19 / 66



Algorithm Design

A natural idea is to directly extend the algorithm to stochastic case.

Stochastic Smoothed and Linearized ALM

Initialize: x0 = z0 ∈ X, y0 ∈ Rm, and ρ ≥ 0.
For t = 0 to T − 1:

1 Sample i.i.d. ζt;
2 yt+1 = yt + ηv(xt, ζt), where v(xt, ζt) is an unbiased estimator of (Axt − b)

3 Sample ξt ∈ Ξ i.i.d. and generate gradient estimate:

G(xt,yt+1, zt, ξt) = ∇xLρ(xt,yt+1; ξt) + µ(xt − zt)

4 xt+1 = projX(xt − τG(xt,yt+1, zt, ξt))

5 zt+1 = zt + β(xt+1 − zt)

End For

20 / 66



Two Challenges

• The projection breaks unbiased structure:

• Well-known that without constraint X, SGD step is an unbiased estimator of gradient
descent for K

• However, the projection step can break the unbiased structure.
• We do not have a descent lemma for K

• Bounded variance of ∇xK requires boundedness of dual variable y

• The variance is proportional to 󰀂y󰀂
• Need boundedness of y, usually challenging in nonconvex and stochastic settings

21 / 66



First Challenge: Using Moreau Envelope

• To address the challenge, we consider the Moreau envelope of K

ϕ1/λ(x,y, z) = min
u∈X

󰀋
K(u,y, z) +

λ

2
󰀂u− x󰀂2

󰀌
.

• By Davis and Drusvyatskiy [2019], if the variance for gradient estimation is bounded, we
have descent lemma for ϕ1/λ

• Therefore, we replace K by ϕ1/λ and consider the potential function

ϕ1/λ(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt)

• We can show a descent lemma of this potential function if we can guarantee bounded
variance, i.e., bounded yt

22 / 66



Controlling 󰀂yt󰀂

• To control 󰀂yt󰀂, we propose a pulling back approach

• For some lower bound My, we set yt+1 = 0 if 󰀂yt+1󰀂 ≥ My.

• This can guarantee the boundedness of yt

• Interestingly, we can show that the potential function is non-increasing after this pulling back step.

• Therefore, we incorporate this in our algorithm.

23 / 66



Our Algorithm

Stochastic Smoothed and Linearized ALM

Initialize: x0 = z0 ∈ X, y0 ∈ Rm, and ρ ≥ 0.
For t = 0 to T − 1:

1 Sample i.i.d. ζt;

2 yt+1 = yt + ηv(xt, ζt), where v(xt, ζt) is an unbiased estimator of (Axt − b)

3 If 󰀂yt+1󰀂 ≥ My, set yt+1 = 0;

4 Sample ξt ∈ Ξ i.i.d. and generate gradient estimate:

Eξt [G(xt,yt+1, zt, ξt)] = ∇xLρ(xt,yt+1) + µ(xt − zt)

5 xt+1 = projX(xt − τG(xt,yt+1, zt, ξt))

6 zt+1 = zt + β(xt − zt)

End For

24 / 66



Theoretical Guarantee

Theorem
Under oracle 1, run our Algorithm(Dual-Safeguarded Stochastic ALM) with η, τ,β chosen as
Θ(1/

√
T ), we have that E󰀂∇Ψ(zt∗)󰀂 ≤ ε where t∗ is selected uniformly at random from

{1, . . . , T} with T = Θ(ε−4). The sample complexity is O(ε−4).

25 / 66



Variance Reduction

• Under oracle2, we can use variance reduction technique to reduce the sample complexity

• We replace the gradient projection step of K by a variance reduced SGD called STORM

• Then we can prove the O(1/󰂃3) sample complexity

• This means our framework is flexible to combine different techniques for stochastic optimization

26 / 66



Stochastic Smoothed and Linearized ALM with STORM

Algorithm: STORM-based Stochastic ALM

Input: ρ ≥ 0, N = T 1/6

Initialize: x0 = z0 ∈ X, y0 ∈ Rm, 󰁥∇f0 =
1
N

󰁓N
i=1∇f(x0, ζi)

For t = 0 to T − 1:
1 yt+1 = yt + η(Axt − b)

2 Compute: G(xt,yt+1, zt) = 󰁥∇ft +A⊤yt+1 +A⊤(Axt − b) + λ(xt − zt)
3 xt+1 = projX (xt − τG(xt,yt+1, zt))

4 zt+1 = zt + β(xt − zt)

5 Sample ξt+1 ∼ Ξ i.i.d., update gradient:

󰁥∇ft+1 = ∇f(xt+1, ξt+1) + (1− α)
󰀓
󰁥∇ft −∇f(xt, ξt+1)

󰀔

27 / 66



Theoretical Results

Theorem
Under oracle 2, run our Algorithm(STORM-based Stochastic ALM) with η, τ,β chosen as
Θ(T−1/3), we have that E󰀂∇Ψ(zt∗)󰀂 ≤ ε where t∗ is selected uniformly at random from
{1, . . . , T} with T = Θ(ε−3). The sample complexity is O(ε−3).

28 / 66



Why GRPO Needs Normalization: A Local-Curvature Perspective on
Adaptive Gradients

Cheng Ge∗, Heqi Yin∗, Hao Liang, and Jiawei Zhang

29 / 66



LLM Reasoning

• Large language model (LLM) have achieved remarkable success.

• LLM reasoning, e.g., LLM for maths, coding has become an active research topic.

• Reinforcement learning (RL) and policy optimization provide powerful tools for post-training LLMs
to improve reasoning capabilities.

• Among existing approaches, Group Relative Policy Optimization (GRPO) demonstrates strong
empirical performance.

• Main message

GRPO ⇔ gradient descent with adaptive stepsizes
GRPO adapts to local curvature/local Lipschitz smoothness.

30 / 66



The Evolution of LLM Training for Reasoning

Traditional Approaches:
• Supervised Fine-Tuning (SFT)
• Reinforcement Learning from Human Feedback (RLHF) with learned reward models
• PPO with value function (critic model)

Challenges:
• SFT: Cannot capture reasoning processes
• RLHF: Reward model bias
• PPO: High memory and computational resources

31 / 66



Problem Setting

• Aim to train a policy πθ to generate the next token in an LLM.

• Initial state: question q ∈ Q = {q1, . . . , qn}.
• Objective

J(θ) :=
1

n

n󰁛

i=1

Ji(θ) =
1

n

n󰁛

i=1

Eo∼πθ(·|qi)[r(o, qi)] (1)

• For a question q, the policy gradient:

T󰁛

t=0

Eπθ(at|st)[∇θ log πθ(at | st) ·Qπθ (st, at)] ,

where Qπ(s, a) is the Q-value function.

• Need a critic model to approximate Q.

• Memory-inefficient, inspiring critic-free methods.

32 / 66



Critic-Free Methods

• In many reasoning tasks, rewards are only available after the final token, e.g., whether the
answer is correct

• The environment can be viewed as a one-step MDP/bandit.

response o ∼ πθ(·|q)
reward r(q, o) ∈ {0, 1}

• Focus on the one-step MDP (bandit) setting.

33 / 66



Policy Gradient, REINFORCE, and GRPO

• Objective Function:

J(θ) =
1

n

n󰁛

i=1

Ji(θ) =
1

n

n󰁛

i=1

Eo∼πθ(·|qi)[r(qi, o)]

• Given current iterate θt−1, sample q ∈ Q, an answer o ∼ πθ(o | q) and compute the (unbiased)
stochastic gradient

ĝt := ∇ log πθt−1
(o | q) · r(q, o)

• Stochastic policy gradient
θt = θt−1 − ηĝt

• Unbiased, but high variance

• Variance-reduction methods such as REINFORCE are therefore required

34 / 66



REINFORCE

• Sample K responses: {o1, . . . , oK}
• Compute rewards: {r1, . . . , rK} with rk = r(ok).
• Calculate baseline:

r̄ =
1

K

K󰁛

k=1

rk.

• Advantage function: Ak = rk − r̄

• Update parameters:

θt = θt−1 + η

K󰁛

k=1

∇θ log πθt−1(ok|qi) ·Ak.

• Remark: If we have infinitely many samples, reinforce and stochastic policy gradient
methods are equivalent, both equivalent to full policy gradient method

35 / 66



Group Relative Policy Optimization (GRPO)

• GRPO further normalizes the advantages.

• Given prompt/question q, compute the sample variance of rewards:

σ2
r =

1

K

K󰁛

k=1

(rk − r̄)2.

• Define normalized advantages: Ak = rk−r̄
σr

.

• Policy update:

θt = θt−1 + η

K󰁛

k=1

∇θ log πθt−1(ok|q) ·Ak.

• GRPO rescales updates by the reward standard deviation.

• Open Question:

Why does this normalization yield such strong empirical performance?

36 / 66



Additional Notation and Assumptions

• Assumption 1: Unique correct answer per question

r(qi, oj) =

󰀫
1 if j = a∗i (correct answer)
0 otherwise

• Success probability. The probability of generating the correct answer is

π∗
θ(i) = πθ(oa∗i | qi).

37 / 66



Deterministic Version

• The baseline reward r̄ is already known to reduce variance.

• Main focus: effect of standard deviation (STD) normalization.

• To isolate this effect, we consider the deterministic versions of PG, REINFORCE, and GRPO.

• Specifically, we assume access to infinitely many samples from πθt−1(o | qi), allowing us to
compute the full gradient of J(θ).

• Reinforce is equivalent to full policy gradient method.

• The update of REINFORCE and GRPO simplify and can be compared directly.

38 / 66



Algorithm Comparison: REINFORCE vs GRPO

REINFORCE (Vanilla PG)
1: Input: learning rate η, initial parameters θ0
2: for t = 1 to T do
3: for each question i do
4: θt ← θt−1 +

η
N ∇Ji(θt−1)

5: end for
6: end for
7: Return: πθT

Update form:

θt ← θt−1 + η π∗
θ(i)(1− π∗

θ(i))xi,ai .

GRPO (With Normalization)
1: Input: learning rate η, initial parameters θ0
2: for t = 1 to T do
3: for each question i do
4: θt ← θt−1 +

η
N

∇Ji(θt−1)󰁴
π∗
θt−1

(i)(1−π∗
θt−1

(i))

5: end for
6: end for
7: Return: πθT

Key Difference: GRPO normalizes each
gradient by the STD .

39 / 66



Log-Linear Parametrization and GRPO Updates

Policy parametrization:

πθ(oj | qi) =
exp

󰀃
x⊤
i,jθ

󰀄

󰁓K
l=1 exp

󰀓
x⊤
i,lθ

󰀔 ,

where xi,j ∈ Rd is the feature vector for the pair (qi, oj).
REINFORCE update:

θt ← θt−1 + η
󰁫
π∗
θt−1

(i)
󰀃
1− π∗

θt−1
(i)

󰀄
xi,ai

− π∗
θt−1

(i)
󰁛

j ∕=ai

πθt−1
(oj | qi)xi,j

󰁬
.

GRPO update:

θt ← θt−1 + η

󰀥󰁴
π∗
θt−1

(i)
󰀃
1− π∗

θt−1
(i)

󰀄
xi,ai

−
󰁵

π∗
θt−1

(i)

1−π∗
θt−1

(i)

󰁛

j ∕=ai

πθt−1(oj | qi)xi,j

󰀦
.

Observation: GRPO adaptively rescales the gradient via the local variance.
40 / 66



Core Discovery: Variance = Local Curvature

Theorem (Local Smoothness Bound)

Under log-linear policy parametrization, for any question i and θ ∈ Rd:

󰀂∇2Ji(θ)󰀂 ≤ 4X2
max · π∗

θ(i)
󰀃
1− π∗

θ(i)
󰀄

󰁿 󰁾󰁽 󰂀
Reward variance on qi

where Xmax = maxi∈[n] 󰀂Xi󰀂 is the maximum feature matrix norm.

Corollary (Global Smoothness)

For all i ∈ [n] and θ ∈ Rd,
󰀂∇2Ji(θ)󰀂 ≤ X2

max.

Thus, Ji(θ) is globally X2
max-smooth.

Key Insight: The local curvature of Ji(θ) scales directly with the reward variance. Hence, GRPO
adaptively adjusts step sizes to match local Lipschitz smoothness, while REINFORCE uses a fixed step
size.

41 / 66



Local Curvature Stability

Lemma (Non-uniform Local Smoothness)

Under Assumption 1, for all i ∈ [n] and θ ∈ Rd, Ji(θ) is

5

2
X2

max ·
󰁴
π∗
θ(i)

󰀃
1− π∗

θ(i)
󰀄

smooth over the ball B
󰀓
θ, 1

Xmax
·
󰁴
π∗
θ(i)

󰀃
1− π∗

θ(i)
󰀄 󰀔

.

Interpretation:
• Curvature remains bounded within a neighborhood whose radius scales with

√
variance.

• With step size η = 1
2X2

max
, GRPO updates remain inside this stable region.

• Local smoothness guarantees hold throughout training.

Implication

Normalization in GRPO automatically constrains updates to regions where curvature estimates are
valid, enhancing stability.

42 / 66



An Additional Assumption

• Based on the previous results, we can establish the convergence rate of GRPO in the
single-question setting.

• To extend to multiple questions, we introduce a technical condition
• Assumption 2 (Gradient Orthogonality). For any i ∕= j,

∇Ji(θ)
⊤∇Jj(θ) = 0.

The gradients corresponding to different questions are mutually orthogonal.

43 / 66



Convergence Analysis: REINFORCE

Theorem (Convergence of REINFORCE)

Under Assumptions 1–2 and with step size η = 1
X2

max
, the following holds:

Ji(θt)− Ji(θt−1) ≤ − 1

2X2
max

󰀂∇Ji(θt−1)󰀂2.

Moreover,
T󰁛

t=1

󰀂∇Ji(θt)󰀂2 ≤ 2(1− π∗
θ0(i))X

2
max,

and the iteration complexity satisfies

min
t∈[T ]

󰀂∇Ji(θt)󰀂2 ≤
2(1− π∗

θ0
(i))X2

max

T
.

Implication: REINFORCE achieves a convergence rate that does not depend on the reward variance
during training.

44 / 66



Convergence Analysis: GRPO

Theorem (Convergence of GRPO)

Under Assumptions 1–2 and with step size η = 1
2X2

max
, we have

Ji(θt)− Ji(θt−1) ≤ − 3

8X2
max Ci(t)

󰀂∇Ji(θt−1)󰀂2,

where Ci(t) ≤
󰁴
π∗
θt
(i)

󰀃
1− π∗

θt
(i)

󰀄
. Moreover,

T󰁛

t=1

󰀂∇Ji(θt)󰀂2 ≤ 2(1− π∗
θ0(i))X

2
max ·

8

3T

T−1󰁛

t=0

Ci(t),

and

min
t∈[T ]

󰀂∇Ji(θt)󰀂2 ≤
2(1− π∗

θ0
(i))X2

max

T
· 8

3T

T−1󰁛

t=0

Ci(t).

45 / 66



Convergence Analysis: GRPO

Recall Ci(t) ≤
󰁴

π∗
θt
(i)

󰀃
1− π∗

θt
(i)

󰀄
., and

min
t∈[T ]

󰀂∇Ji(θt)󰀂2 ≤
2(1− π∗

θ0
(i))X2

max

T
· 8

3T

T−1󰁛

t=0

Ci(t).

Implications:
• The factor 8

3T

󰁓
tCi(t) < 1 in most practical cases, implying faster convergence than

REINFORCE.
• When π∗

θ(i) ≪
1
2 (hard problems), GRPO accelerates learning significantly.

• When π∗
θ(i) ≈ 1 (near-perfect policy), gradients are already small, so GRPO and

REINFORCE behave similarly.

46 / 66



Empirical Validations

(a) Gradient Cosine Similarities
Mean | cos(θ)| = 0.088± 0.064

(b) Inverse CDF of Cosine Similarities
90% of gradient pairs | cos(θ)| < 0.15

CurvatureâĂŞVariance Correlation

Time Lag Pearson Correlation Significance

Same iteration 0.342 p < 0.01
Different iterations -0.028 p = 0.18 (n.s.)

Findings: Gradients are nearly orthogonal across prompts, and curvature is significantly correlated with
reward variance.

47 / 66



Experimental Setup

Model Configuration

• Base model: Qwen2.5-Math-1.5B

• Fine-tuning via LoRA (rank = 16, α = 32)

• K = 8 generations per prompt

Dataset Stratification

• GSM8K training set partitioned by difficulty

• Easy: 4,695 examples

• Hard: 1,909 examples

• Difficulty defined by solution complexity

Normalization Variants

• Nstd: Standard GRPO (with variance normalization)

• Nno-std: GRPO without normalization

48 / 66



GSM8K Results: Easy vs. Hard Questions

� �� ��� ��� 	�� 	�� 
�� 
��
�#� "

��

��


�

��

��

��

�
��
$!
��
%�
�
�

�������������������	���

�����

�������!�
�����!����&�#���

Easy Subset: Low-Variance Regime

• Final accuracy: Nstd (92%) > Nno-std (91%).

• Normalization yields small but consistent
gains.

� �� ��� ��� 	�� 	�� 
�� 
��
�"��!

	�


�

��

��


�

��

��

�
��

# 
��

$�
�

�

�����������������������

	����

������� �
����� ����%�"���

Hard Subset: High-Variance Regime

• Final accuracy: Nstd (81%) ≫ Nno-std
(76%).

• GRPO significantly outperforms the
unnormalized variant.

Observation: The benefit of normalization is smallest near ≈ 50% accuracy (maximum Bernoulli
variance) and grows as training moves away from this regime.

49 / 66



Remarks

• For hard questions, the initial accuracy is around 20%, far below 50%.
⇒ GRPO accelerates learning substantially in the early phase.

• For easy questions, the initial accuracy is close to 50%.
⇒ GRPO offers little speedup over REINFORCE in this regime.

• As accuracy becomes high, gradients diminish in magnitude.
⇒ All methods progress slowly, with GRPO still slightly outperforming REINFORCE.

50 / 66



Future Problems

• Today we studied stochastic constrained optimization and adaptive step sizes guided by local
Lipschitz smoothness.

• Natural extensions include:

• Relaxing the gradient orthogonality assumption: prompts may exhibit correlated gradients
with heterogeneous smoothness.

• Designing adaptive step-size rules for more general stochastic constrained problems.
• Extending to distributed optimization, where each agent may have very different smoothness

properties.

51 / 66



Free Draft-and-Verification: Toward Lossless Parallel Decoding for Diffusion
Large Language Models

Shutong Wu, and Jiawei Zhang

52 / 66



Overview

1 Diffusion Large Language Models (DLLMs): Preliminaries and Challenges
2 Our Solution to the Dilemma of Inference Efficiency and Performance
3 Experiments on Math Reasoning and Code Generation Tasks
4 Conclusion and Future Work

53 / 66



Preliminaries

1 Autoregressive Language Modeling
• pθ(x) =

󰁔L
i=1 pθ(x

i|x<i)
• the i-th token xi conditional on all previous token x<i

• usually parameterized by causal-attention Transformers
• GPT, Gemini, Llama, Qwen, DeepSeek, etc.

54 / 66



Preliminaries

2 (Masked) Diffusion Language Modeling
• forward process: progressively replaces each unmasked token in the original sequence x

independently to a special mask token m
• probability of being masked controlled by a noise schedule αt

• αt monotonically decreasing w.r.t. t ∈ [0, 1]; α0 = 1,α1 = 0
• q(xt|x0) =

󰁔L
i=1 q(x

i
t|xi

0) =
󰁔L

i=1 Cat
󰀃
xi
t;αtx

i
0 + (1− αt)m

󰀄

• xi
t: the i-th token at time level t

• once a token is masked at s ∈ [0, 1], it will remain masked at ∀t ∈ [s, 1]

54 / 66



Preliminaries

2 (Masked) Diffusion Language Modeling
• reverse process: recover the original sequence from an all-mask sequence
• for s < t, we have q(xs|xt, x0) =

󰁔L
i=1 q(x

i
s|xi

t, x
i
0)

• for each token,

q(xi
s|xi

t, x
i
0) = q(xi

t|xi
s, x

i
0)q(x

i
s|xi

0)/q(x
i
t|xi

0)

=

󰀫
Cat(xi

s;x
i
t) if xi

t ∕= m
Cat(xi

s;
(1−αt)m+(αs−αt)x

i
0

1−αt
) if xi

t = m

• train a model fθ to estimate x0 from xt (usually with ELBO as objective), and induce the
reverse process for each token as

pθ(x
i
s|xi

t) = q(xi
s|xi

t, x
i
0 = fθ(x

i
t, t))

=

󰀫
Cat(xi

s;x
i
t) if xi

t ∕= m
Cat(xi

s;
(1−αt)m+(αs−αt)f

i
θ(xt,t)

1−αt
) if xi

t = m

• once a token is unmasked at t, it will remain unchanged at ∀s ∈ [0, t]
• static decoding: decode token with highest probability at each step

54 / 66



Preliminaries

2 (Masked) Diffusion Language Modeling
• usually parameterized by bidirectional-attention Transformers
• comparable performance with AR LLMs
• challenges:

• good performance requires more decoding steps (usually equal to the sequence length)
• slower decoding due to the bidirectional attention
• parallel decoding: decode multiple tokens at each step, but usually with non-trivial

performance drop

54 / 66



FreeDave: Lossless Parallel Decoding

1 Our solution: self-verifiable lossless parallel decoding
2 Multiple parallel-decoded candidates from the estimated distribution at current step
3 At next step, batch forward and decode one more step on each candidate, and compare

with the previous candidates to verify correctness
55 / 66



FreeDave: Lossless Parallel Decoding

56 / 66



FreeDave: Lossless Parallel Decoding

57 / 66



FreeDave: Lossless Parallel Decoding

1 Theoretically, we can prove that FreeDave generates the same sequence as static decoding
that decodes one token with the highest probability at each step.

2 Additionally, with a large enough draft size, FreeDave is guaranteed to find the optimal
path with the fewest decoding steps.

58 / 66



Experiments on Math Reasoning Tasks

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on MATH500.

Model Sampling Acc (%) ↑ Throughput over time
(#tokens/s) ↑

Throughput over NFEs
(#tokens) ↑

Dream-7B-Instruct
Static 40.00 23.02 0.91
Parallel 37.00 (-3.00) 16.73 (0.73) 1.88 (2.07×)

FreeDave 40.20 (+0.20) 30.00 (1.30×) 2.63 (2.89×)

TraDo-4B-Instruct
Static 74.20 7.26 0.26
Parallel 68.80 (-5.40) 18.94 (2.61×) 0.61 (2.35×)

FreeDave 76.40 (+2.20) 16.36 (2.25×) 0.67 (2.58×)

TraDo-8B-Instruct
Static 76.40 7.10 0.28
Parallel 74.00 (-2.40) 16.11 (2.27×) 0.60 (2.14×)

FreeDave 77.60 (+1.20) 15.99 (2.25×) 0.66 (2.36×)

59 / 66



Experiments on Math Reasoning Tasks

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on GSM8K.

Model Sampling Acc (%) ↑ Throughput over time
(#tokens/s) ↑

Throughput over NFEs
(#tokens) ↑

Dream-7B-Instruct
Static 79.61 20.99 0.83
Parallel 68.16 (-11.45) 16.61 (0.79×) 1.81 (2.18×)

FreeDave 80.21 (+0.60) 27.39 (1.30×) 2.34 (2.82×)

TraDo-4B-Instruct
Static 91.58 4.41 0.15
Parallel 89.08 (-2.50) 9.82 (2.23×) 0.35 (2.33×)

FreeDave 91.05 (-0.53) 10.03 (2.27×) 0.39 (2.60×)

TraDo-8B-Instruct
Static 92.72 3.41 0.12
Parallel 92.34 (-0.38) 6.17 (1.81×) 0.23 (1.92×)

FreeDave 92.80 (+0.08) 6.92 (2.03×) 0.28 (2.33×)

60 / 66



Experiments on Math Reasoning Tasks

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on AIME2024.

Model Sampling Acc (%) ↑ Throughput over time
(#tokens/s) ↑

Throughput over NFEs
(#tokens) ↑

Dream-7B-Instruct
Static 6.67 22.82 0.94
Parallel 3.33 (-3.34) 16.09 (0.71×) 1.92 (2.04×)

FreeDave 3.33 (-3.34) 24.08 (1.06×) 3.55 (3.78×)

TraDo-4B-Instruct
Static 10.00 11.38 0.41
Parallel 10.00 (+0.00) 20.52 (1.80×) 0.75 (1.83×)

FreeDave 13.30 (+3.30) 26.07 (2.29×) 1.04 (2.54×)

TraDo-8B-Instruct
Static 13.33 15.39 0.51
Parallel 10.00 (-3.33) 24.00 (1.56×) 0.86 (1.67×)

FreeDave 16.66 (+6.66) 29.62 (1.92×) 1.18 (2.31×)

61 / 66



Experiments on Code Generation Tasks

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on MBPP.

Model Sampling Acc (%) ↑ Throughput over time
(#tokens/s) ↑

Throughput over NFEs
(#tokens) ↑

Dream-7B-Instruct
Static 46.20 15.49 0.62
Parallel 37.40 (-8.80) 15.36 (0.99×) 1.70 (2.74×)

FreeDave 46.40 (+0.20) 20.32 (1.31×) 1.80 (2.90×)

TraDo-4B-Instruct
Static 57.40 1.63 0.06
Parallel 49.40 (-8.00) 4.28 (2.63×) 0.14 (2.33×)

FreeDave 56.60 (-0.80) 4.19 (2.57×) 0.15 (2.50×)

TraDo-8B-Instruct
Static 63.20 1.80 0.07
Parallel 57.00 (-6.20) 3.67 (2.04×) 0.13 (1.86×)

FreeDave 63.60 (+0.40) 3.86 (2.14×) 0.15 (2.14×)

62 / 66



Experiments on Code Generation Tasks

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on HumanEval.

Model Sampling Acc (%) ↑ Throughput over time
(#tokens/s) ↑

Throughput over NFEs
(#tokens) ↑

Dream-7B-Instruct
Static 54.88 17.85 0.72
Parallel 35.37 (-19.51) 15.72 (0.88×) 1.77 (2.46×)

FreeDave 56.09 (+1.21) 24.40 (1.37×) 2.14 (2.97×)

TraDo-4B-Instruct
Static 59.76 4.33 0.17
Parallel 57.32 (-2.44) 7.36 (1.70×) 0.26 (1.53×)

FreeDave 60.98 (+1.22) 8.74 (2.02×) 0.38 (2.24×)

TraDo-8B-Instruct
Static 68.90 2.69 0.12
Parallel 65.24 (-3.66) 4.57 (1.70×) 0.22 (1.83×)

FreeDave 68.90 (+0.00) 4.28 (1.59×) 0.26 (2.17×)

63 / 66



Conclusion and Future Work

1 FreeDave: bring more speedup, but also overcome the challenge of performance
degradation at the same time.

• No modification or extra training required
• No extra modules
• Self-verifiable, seamless integration with existing DLLMs
• Compatible with caching techniques

2 When using a very large number of draft steps, a model forward call on a batch of inputs
will take a longer time

• Trade-off between time and NFE
• Tensor Parallelism or Data Parallelism? Extra communication cost?

64 / 66



References I

Ahmet Alacaoglu and Stephen J Wright. Complexity of single loop algorithms for nonlinear
programming with stochastic objective and constraints. In Sanjoy Dasgupta, Stephan Mandt,
and Yingzhen Li, editors, Proceedings of The 27th International Conference on Artificial
Intelligence and Statistics, volume 238 of Proceedings of Machine Learning Research, pages
4627–4635. PMLR, 02–04 May 2024. URL
https://proceedings.mlr.press/v238/alacaoglu24a.html.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. Mathematical
Programming, 199(1):165–214, 2023.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex
functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

65 / 66

https://proceedings.mlr.press/v238/alacaoglu24a.html


References II

Zichong Li, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Yangyang Xu. Stochastic inexact
augmented lagrangian method for nonconvex expectation constrained optimization.
Computational Optimization and Applications, 87(1):117–147, 2024.

Zhaosong Lu, Sanyou Mei, and Yifeng Xiao. Variance-reduced first-order methods for
deterministically constrained stochastic nonconvex optimization with strong convergence
guarantees. arXiv preprint arXiv:2409.09906, 2024.

Jiawei Zhang and Zhi-Quan Luo. A proximal alternating direction method of multiplier for
linearly constrained nonconvex minimization. SIAM Journal on Optimization, 30(3):
2272–2302, 2020.

66 / 66


