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e Optimal First-Order Algorithm for Stochastic Constrained Optimization
® Understanding GRPO as Adaptive Gradient Descent

e Efficient Lossless Inference of Diffusion Language Model
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e Consider a generic optimization problem:

min f(x).

r€R4
® Suppose f is bounded below and ¢-Lipschitz smooth, i.e.,
IV f(z) = V)] < |z — 2.

® Two simple but powerful algorithms: gradient descent and stochastic gradient descent:

GD: 2! =zt — ¢,V f(a?)

SGD: z!*! =zt — ¢;g%, where ¢! is an unbiased estimator of V f(x!) with variance o.
First-order algorithms: well-suited for large-scale problems, simple steps, especially SGD
using small batch.
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lteration and Sample Complexity Y

® For nonconvex problems, lteration complexity is the number of iterations needed to obtain
an e-stationary solution:

Deterministic case: ||V f(z)|| < €
Stochastic case: E||Vf(z)| <€

® For GD, we use ¢; = 1/¢ and iteration complexity is O(¢/¢2).

® For SGD, we choose ¢; = €2/fo? and the sample and iteration complexity are O({o?/e?).
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Natural Open Problems

® \We have some natural open questions:

® For constrained optimization problems, can we still achieve O(1/€?) iteration complexity using
first-order methods?

® For stochastic constrained optimization, can we still achieve O(1/€*) sample and iteration
complexity?

® Suppose the Lipschitz smoothness constants are different x, can we use adaptive stepsize to
accelerate?

® These questions are just very natural extension of textbook results.
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My Previous Works for Deterministic Constrained Optimization

® Consider constrained optimization
min T
xEX,AI:bf( )
where X is a convex, closed set and easy to project,

® \We can design a first-order algorithm, only requiring gradient iteration and projection to X with
O(1/€?) iteration complexity.

® This is shown in [Zhang and Luo 2020, proximal],[Zhang and Luo, 2022, global] and [Zhang et al,
2022, iteration]

® | further work on the problem minge x 4, (2)<0 f(), where g;,i € [m] is convex, X is convex,
closed and easy to project.

® We show it can be solved by first-order method with O(1/¢?) iteration complexity, only requiring
gradient iteration and projection on X.
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Stochastic Constrained Optimization Y

® |n the first part of this talk, we design first-order method for stochastic constrained optimization
® We show the optimal sample complexity.

® We also discuss the optimal sample complexity under a variance reduction technique.
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Stochastic Smoothed Primal-Dual Algorithms for Nonconvex Optimization
with Linear Inequality Constraints

Ruichuan Huang, Jiawei Zhang, and Ahmet Alacaoglu
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Introduction to Stochastic Constrained Optimization

We solve

min  Ee.z(f(x,¢)]

st. Eevq[A(Q)x —b] =0
where X = Hx < h, for some matrix H and vector h.

e Without loss of generality, we assume X is projection-friendly

® Otherwise, we introduce slack variables to rewrite the constraints to be

{z,w| Az = b, Hx +w = h,w > 0} and then the inequality constraints are
projection-friendly
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The First Type of Stochastic Oracle \/

Assume that for any x, we can pick i.i.d. sample £ and

compute the unbiased estimation of Vf,Ax — b:

Ee[Vf(x;€)] = Vf(x),
Ec[v(¢)] = EcA(Q)z — b,

Assume that the variance of estimator is bounded by o2.

® From Arjevani et al. [2023], for unconstrained nonconvex stochastic optimization, the
lower bound of sample complexity under oracle 1 is Q(e*)

Open problem: Can we achieve this lower bound for constrained problems?
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The Second Type of Stochastic Oracle \/

® Sometimes, we can access stronger oracles.

® \We assume that for any i.i.d. sample £, we access the unbiased estimation of V f,Ax — b

at two different 2!, 22

Ee[Vf(x';€)] = Vf(x),
Eclv(a',¢)] = Az’ —b,

and the variance of the estimator is assumed to be bounded by o2.

® Commonly used assumption for variance reduction, sometimes impractical, e.g., in
federated learning

® Lower bound under this oracle: Q(1/¢3)

® Open problem: Can we achieve this for constrained optimization?
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An Example: Federated Learning Y

Federated learning: m agents, a central server, objective function of agent i:

fi(z) == Eenp, f(2:€)
We minimize f(z) =", fi(z)

® A consensus constrained reformulation: ming, _,—o.iem] >_; fi(:)

® agent ¢ controls z; and the server controls g

® At any time, agent ¢ only has some probability p to be active, i.e., connected to the server

If connected we can estimate x; — zg, otherwise 0 * z; — 0 * x¢
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® Hence for any = (zg, 21, ,2n), we have an unbiased estimate of zy — z;

® The first oracle is more practical

e At different times, random sample—the status of connection to server is different
e At time ¢ and ¢ + 1, the connection is different

® Hence, hard to satisfy oracle 2
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Comparison of Methods

and z € X is polyhedral

Reference Constraint Oracle | Complexity | Loops | Method
Alacaoglu & Wright [2024] | Az =b 2 O(e™3) 1 ALM
Ble(@ O] =0, -
Alacaoglu & Wright[2024] and x € X where 2 O(e™%) 1 Penalty
X is easy to project
c(z) =0,
Lu et al. [2024] and z € X where 2 O(e™3) 1 Penalty
X is easy to project
B O] =0,
Li et al. [2024] and z € X where 2 O(e7%) 2 Penalty*
X is easy to project
. Az = b, _4
This work and z € X is polyhedral 1 O™ %) 1 ALM
- E[AQz —b(0)] = 0, -
This work and z € X is polyhedral 1 0@E™) 1 ALM
This work Az =1, 2 0(==3) 1 | ALM

* This method is referred to as a penalty method because the penalty parameter is taken to infinity to ensure feasibility,

and dual updates do not contribute in achieving feasibility.
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Our Contribution W

e We design first-order, single-loop algorithms with constant batch size to solve nonconvex
optimization problems with stochastic constraints

® The algorithm is Lagrangian based, does not require large penalty
® optimal sample complexity O(¢~%) under the first stochastic oracle

e optimal sample complexity O(¢~3) under the second stochastic oracle
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Algorithm Design Y

One influential idea is to use the augmented Lagrangian(AL) method to solve the problem:
p
Ly(x,y) = f(x) + {Ax = b,y) + T [ Ax ~ b|?
Then the ALM iteration proceeds for k = 1,2,--- by updating
X1 A arg )I(Ig(l Ly(x,y1)
Yi+1 = Yk + n(AXg11 — b)

However, the ALM may not converge if f is nonconvex
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Algorithm Design \/

® First recall the deterministic case. Consider the deterministic constrained opt:
re R, 1)

o Let K(,y,2) = Ly(a,y) + &z — 2|1

® Dual ascent: Y141 = yr + a(Azy — b);

® 2111 = Projy(z¢ — Vo K (24, yey1, 2t));

® ztr1 =z + B(Tr41 — 21).
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Interpretation of the Algorithm Y

The algorithm can be regarded as an Inexact GD on the Moreau envelope

The Moreau envelope of our problem is given as

. 7
U(z) = _min {00+ lx— 2]

By Danskin's Theorem, the gradient of U(z) is given by
VU (2) = p(z — 2(2))

where Z(z) = arg minye x, ax=b {f(x) + %Hx - zt||2}

The update of x and y can be viewed as an approximation to Z(z).
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The Potential Function W

In the deterministic case (Zhang and Luo [2020]), we can use the following potential function:

Vi = K(x¢,¥t,2t) — 2d(yy, z¢) + 2%(z¢), where we use
1

K(X>ya Z) = LP(XaY) + §||X - Z||27

. [t
d(y,z) = min Ly(x,y) + 5 x - z||%,

U(z) = win_ {7x)+ Sl -2)?}

x€X,Ax=b
® The gradient projection step can reduce K
® The dual ascent step can approximately reduce —d
® The update of z can approximately reduce ¢ (z) (Moreau envelope gradient descent).
The potential function V; is decreasing, then we can show that the convergence of the
algorithm. Denote x*(y,z) = arg min, .y K(x,y,z), we have

i
3p

1 *
Vi — Vigr > EHXt —xp|? + gHAX (Ye1,2) — b + |z — ze11]>.
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Algorithm Design

A natural idea is to directly extend the algorithm to stochastic case.

Stochastic Smoothed and Linearized ALM

Initialize: xg =z¢ € X, yo € R™, and p > 0.
Fort=0to T — 1:

@ Sample i.id. (;
® yiir1 =Yy +nv(xe, (), where v(xy,(;) is an unbiased estimator of (Ax; — b)

© Sample & € = i.i.d. and generate gradient estimate:
G(xt,yt+1,2t,6t) = Ve Lp(Xt, Y415 &) + p(xe — 21)

Q Xt4+1 = prOjX(Xt - TG(Xt7 Yt+1, %y, gt))
O zip1 =2 + B(Xe41 — 2t)
End For
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Two Challenges \/

® The projection breaks unbiased structure:

Well-known that without constraint X, SGD step is an unbiased estimator of gradient
descent for K

However, the projection step can break the unbiased structure.

We do not have a descent lemma for K

® Bounded variance of VK requires boundedness of dual variable y

The variance is proportional to ||y||
Need boundedness of y, usually challenging in nonconvex and stochastic settings
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First Challenge: Using Moreau Envelope

To address the challenge, we consider the Moreau envelope of K

: A 2
QOl/)\(X,y,Z) = umel)r% {K(uay7 Z) + 5”11 - XH }

By Davis and Drusvyatskiy [2019], if the variance for gradient estimation is bounded, we
have descent lemma for ¢y /)

Therefore, we replace K by ¢/, and consider the potential function

Pt Yt 2t) = 2d(ye, 20) + 20 (2)

We can show a descent lemma of this potential function if we can guarantee bounded
variance, i.e., bounded y?
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Controlling [|3/!]| \/

To control ||

|, we propose a pulling back approach

For some lower bound M, we set y'™! = 0 if |[y' Tl > M,

This can guarantee the boundedness of 3t

Interestingly, we can show that the potential function is non-increasing after this pulling back step.

Therefore, we incorporate this in our algorithm.
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Our Algorithm

Stochastic Smoothed and Linearized ALM

Initialize: xo =z € X, yg € R™, and p > 0.
Fort=0toT — 1:

® Samplei.id. {;
® yii1 =Yyt +nu(xe, (), where v(xy, (;) is an unbiased estimator of (Ax; — b)
© If [y > M, set y't1 =0;

@ Sample & € = i.i.d. and generate gradient estimate:
Ee, [G(xt: Yi+1,2t,&)] = VLp(Xt, Y1) + p(xe — 24)

O %11 = pron(xt - TG(Xtvyt—‘rlazt,gt))
O zi11 =2 + B(xt — 24¢)
End For
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Theoretical Guarantee

Theorem

Under oracle 1, run our Algorithm(Dual-Safeguarded Stochastic ALM) with n, T, 3 chosen as
O(1/V/T), we have that E|VU(z:)|| < & where t* is selected uniformly at random from
{1,...,T} with T = ©(¢~*). The sample complexity is O(s~%).
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Variance Reduction W

Under oracle2, we can use variance reduction technique to reduce the sample complexity

We replace the gradient projection step of K by a variance reduced SGD called STORM

Then we can prove the O(1/€%) sample complexity

This means our framework is flexible to combine different techniques for stochastic optimization
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Stochastic Smoothed and Linearized ALM with STORM

Algorithm: STORM-based Stochastic ALM

Input: p >0, N = T1/6 R
Initialize: xg =29 € X, yo € R™, Vfy = % Z@]L V f(xo0, Gi)

Fort=0to71 —1:

® yi1 =y: +1Ax; — b)

(2] Compute: .G(Xt’ Yi+1, Zt) = %ft + ATyH_l + AT(AXt — b) + )\(Xt — Zt)
© i1 = projx (x¢t — 7G(Xt, yt+1,%t))

O 7111 =7z + B(xt — 7t)
@ Sample &1 ~ Z i.i.d., update gradient:

Vfir1 = VI(xei1,E41) + (1 — @) (€ft = Vf(Xt7§t+1))
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Theoretical Results

Theorem

Under oracle 2, run our Algorithm(STORM-based Stochastic ALM) with n, T, 3 chosen as
O(T~1/3), we have that E|V¥(z:)|| < & where t* is selected uniformly at random from
{1,...,T} with T = ©(¢=3). The sample complexity is O(s3).
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Why GRPO Needs Normalization: A Local-Curvature Perspective on
Adaptive Gradients

Cheng Ge*, Heqi Yin*, Hao Liang, and Jiawei Zhang
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LLM Reasoning Y

® Large language model (LLM) have achieved remarkable success.
® |LLM reasoning, e.g., LLM for maths, coding has become an active research topic.

® Reinforcement learning (RL) and policy optimization provide powerful tools for post-training LLMs
to improve reasoning capabilities.

® Among existing approaches, Group Relative Policy Optimization (GRPO) demonstrates strong
empirical performance.

® Main message

GRPO & gradient descent with adaptive stepsizes
GRPO adapts to local curvature/local Lipschitz smoothness.
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The Evolution of LLM Training for Reasoning \/

Traditional Approaches:
® Supervised Fine-Tuning (SFT)
¢ Reinforcement Learning from Human Feedback (RLHF) with learned reward models
® PPO with value function (critic model)
Challenges:
e SFT: Cannot capture reasoning processes
® RLHF: Reward model bias

® PPO: High memory and computational resources
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Problem Setting \/

® Aim to train a policy 7y to generate the next token in an LLM.
® |nitial state: question ¢ € Q ={q1,...,qn}-

® Objective

n

z_: i ZEONWH('|%)[T(O7 Qz)] (1)

z=1

3|'—‘

® For a question ¢, the policy gradient:

T
ZEﬂe(aHSt)[vG log 7r‘9(a’t | St) . ng (Sta a’t)] )
t=0

where Q™ (s, a) is the Q-value function.
® Need a critic model to approximate Q.
® Memory-inefficient, inspiring critic-free methods.

32/66



Critic-Free Methods U/

® |n many reasoning tasks, rewards are only available after the final token, e.g., whether the

answer is correct
® The environment can be viewed as a one-step MDP /bandit.

response 0 ~ Ty(|q)
reward r(q,0) € {0,1}

® Focus on the one-step MDP (bandit) setting.
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Policy Gradient, REINFORCE, and GRPO )

¢ Objective Function:

n

Z Z]Eowmqi)[’"(qi» 0)]

z:l

:I>—‘

® Given current iterate 6;_1, sample ¢ € Q, an answer o ~ my(0 | ¢) and compute the (unbiased)
stochastic gradient

gt == Vlogmg, (0] q) 7(g,0)

Stochastic policy gradient
O = 0i1 — NGy

Unbiased, but high variance

® Variance-reduction methods such as REINFORCE are therefore required
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REINFORCE ¥

® Sample K responses: {o1,...,0x}
e Compute rewards: {ry,...,rx} with ry = r(oy).
® (Calculate baseline:
| XK
= I :E:: Tk
k=1
e Advantage function: Ay =rp — T
e Update parameters:
K
0y =0,1+nY _ Vologm,_, (orlg:) - A
k=1

® Remark: If we have infinitely many samples, reinforce and stochastic policy gradient
methods are equivalent, both equivalent to full policy gradient method
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Group Relative Policy Optimization (GRPO)

e GRPO further normalizes the advantages.

Given prompt/question ¢, compute the sample variance of rewards:

FONUELE

TR—T
or

Define normalized advantages: Aj =

® Policy update:

K
0y =0,1+n Y _ Vglogms,_,(oxlg) - A
k=1

GRPO rescales updates by the reward standard deviation.

Open Question:
Why does this normalization yield such strong empirical performance?
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Additional Notation and Assumptions Y

e Assumption 1: Unique correct answer per question

( ) 1 if j = a} (correct answer)
r(qi,05) = _
40 0 otherwise

® Success probability. The probability of generating the correct answer is

my(i) = mo(0ar | i)
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Deterministic Version W

® The baseline reward 7 is already known to reduce variance.
® Main focus: effect of standard deviation (STD) normalization.
® To isolate this effect, we consider the deterministic versions of PG, REINFORCE, and GRPO.

® Specifically, we assume access to infinitely many samples from 7y, _, (0 | g;), allowing us to
compute the full gradient of J(6).

® Reinforce is equivalent to full policy gradient method.

® The update of REINFORCE and GRPO simplify and can be compared directly.
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Algorithm Comparison: REINFORCE vs GRPO )

REINFORCE (Vanilla PG) GRPO (With Normalization)

1: Input: learning rate 7, initial parameters 6 1: Input: learning rate 7, initial parameters 6,
2: fort=1to T do 2: fort=1to T do
3 for each question i do 3:  for each question i do
. VJi(0s—
4 Oy = 0—1 + 5 VJi(6:-1) 4 Op 01+ § —= (i)((liwl*) 5)
5 end for \/ it 9—1
G il e 5. end for
7: Return: 7y, 6: end for
7: Return: mp,.

Update form: . ]
Key Difference: GRPO normalizes each

O < 0,1 + (i) (1 — 75(i)) Ty, gradient by the STD .
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Log-Linear Parametrization and GRPO Updates \/

Policy parametrization:
exp(z,.,;0)

}:ﬁﬂexp<z39)’

)

m(0; | i) =

where z; ; € R is the feature vector for the pair (¢;,0;).
REINFORCE update:

00 s+ nmh,_, (D (1= 5, (D)0 — 5, () 7o, (05 | @) ).
Jj#a;
GRPO update:

w;z_l(z')(l — 5, ,(0)) Tia,

Mo 7o, . (05 | @) x;
1- 7"9,5 z) 0r—1\9j Qz i,7

Jj#ai
Observation: GRPO adaptively rescales the gradient via the local variance.

015 <— 9,571 +’I7
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Core Discovery: Variance = Local Curvature

Theorem (Local Smoothness Bound)

Under log-linear policy parametrization, for any question i and 6 € R%:

IV2ZO) < AX7a - w5 () (1 — m5(3))
—_— —

Reward variance on q;

where X ax = max;cpy || X;|| is the maximum feature matrix norm.

Corollary (Global Smoothness)

For all i € [n] and § € RY,
IV2T(0)]l < Xiaxe-

Thus, J;(0) is globally X2, -smooth.

Key Insight: The local curvature of J;(0) scales directly with the reward variance. Hence, GRPO
adaptively adjusts step sizes to match local Lipschitz smoothness, while REINFORCE uses a fixed step

size.
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Local Curvature Stability \/

Lemma (Non-uniform Local Smoothness)

Under Assumption 1, for all i € [n] and 6 € R?, J;(0) is
o 2 * (7 o
§Xmax T (Z)(l — Ty (7’))

smooth over the ball B(é?7 /7@ (1 —75(5) ) :

Interpretation:

® Curvature remains bounded within a neighborhood whose radius scales with /variance.

® With step size n = 2X+ GRPO updates remain inside this stable region.

® [ocal smoothness guarantees hold throughout training.

Implication

Normalization in GRPO automatically constrains updates to regions where curvature estimates are

valid, enhancing stability. ,
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An Additional Assumption Y

® Based on the previous results, we can establish the convergence rate of GRPO in the
single-question setting.
® To extend to multiple questions, we introduce a technical condition

e Assumption 2 (Gradient Orthogonality). For any i # j,
VJi(0)'V.J;(0) = 0.

The gradients corresponding to different questions are mutually orthogonal.
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Convergence Analysis: REINFORCE

Theorem (Convergence of REINFORCE)

Under Assumptions 1-2 and with step size 1) = w3—, the following holds:
1

Ji(0r) — Ji(0i-1) < “oxz

max

IV i (Oe—1)II*.

Moreover,
T
D IVIG)I? < 2(1 = 75 (1) X2
t=1

and the iteration complexity satisfies

2<1 _ 7730 (7’)) Xr?ﬂax
T .

i VJ; (6 2 <
mitn [VJ:(0:)]° <

Implication: REINFORCE achieves a convergence rate that does not depend on the reward variance
during training.
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Convergence Analysis: GRPO

Theorem (Convergence of GRPO)

Under Assumptions 1-2 and with step size ) = 55—, we have

3

Ji(0y) — Ji(0—1) < “IXI_Gilh)

IV i (6e-1)11%,

where C;(t) < \/ﬂ';t ()1 - 5, (i)). Moreover,

T 8 T—
Z HVJl(et)” < 2(1 - 7T90 max : _T Z
t=1 t=0
and _
2(1— 7% ())X2,. 8 L=
q (0 92 < 6o max O ¢
min [V 76| < i o7 ; C
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Convergence Analysis: GRPO ¥

Recall Cj(t) < \/ﬂgt(é)(l—wgt(i))., and

2(1 — 7k (1)) X2 g !
. ‘ 2 < 6o max O ) )
min IVT;(6)]° < = o7 ; Ci(t)

Implications:

® The factor 3%, >~ Ci(t) <1 in most practical cases, implying faster convergence than
REINFORCE.

® When 7} (i) < 3 (hard problems), GRPO accelerates learning significantly.

® When 7} (i) = 1 (near-perfect policy), gradients are already small, so GRPO and
REINFORCE behave similarly.
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Empirical Validations

Gradient Cosine Similarity (absolute)

--- Mean = 0.088 Mean = 0.088
80 ' Std = 0.064
N = 1000
560
2
g
g
Z
g 40
£
20

0 0.00 0.05 0.10 0.15 0.20 0.25 0.3; 0.35
cos(Vf i, Vf_j)|
(a) Gradient Cosine Similarities

Mean | cos(0)| = 0.088 £ 0.064

CurvaturedASVariance Correlation

Inverse CDF of |cosine similarity|

6
°
8

t(6) such that P(Jcos| <t) =1 —
°

0.0 02 08 10

0.4 0.6
6 (tolerance level)

(b) Inverse CDF of Cosine Similarities
90% of gradient pairs | cos(9)| < 0.15

Time Lag

Pearson Correlation  Significance

Same iteration
Different iterations

p < 0.01
p=0.18 (n.s.)
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Experimental Setup Y

Model Configuration Dataset Stratification
® Base model: Qwen2.5-Math-1.5B e GSMBSK training set partitioned by difficulty
® Fine-tuning via LoRA (rank = 16, a = 32) ® Easy: 4,695 examples
e K = 8 generations per prompt ® Hard: 1,909 examples

e Difficulty defined by solution complexity
Normalization Variants
® MNaq: Standard GRPO (with variance normalization)

® Niostd: GRPO without normalization
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GSMB8K Results: Easy vs. Hard Questions

Accuracy vs Steps (GSM8K_Easy) Accuracy vs Steps (GSM8K_Hard)

90

®
3

®
8
~
3

— 60
£70 S
3 3
] o 50
5 5
g €0 8
< < 40
50
30
= GRPO Norm ”
40

= GRPO Norm
== No Normalization

== No Normalization

n
3

0 50 100 150 200 250 300 350
Steps

°
@
3

100 150 200 250 300 350
Steps

Easy Subset: Low-Variance Regime Hard Subset: High-Variance Regime

® Final accuracy: Ngd (92%) > NMio-std (91%). ® Final accuracy: Ngd (81%) > Muoostd

o . . 76%).
® Normalization yields small but consistent (76%)

gains. e GRPO significantly outperforms the 4966



® For hard questions, the initial accuracy is around 20%, far below 50%.
= GRPO accelerates learning substantially in the early phase.

® For easy questions, the initial accuracy is close to 50%.
= GRPO offers little speedup over REINFORCE in this regime.

® As accuracy becomes high, gradients diminish in magnitude.
= All methods progress slowly, with GRPO still slightly outperforming REINFORCE.
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Future Problems W

® Today we studied stochastic constrained optimization and adaptive step sizes guided by local
Lipschitz smoothness.

e Natural extensions include:

Relaxing the gradient orthogonality assumption: prompts may exhibit correlated gradients
with heterogeneous smoothness.

Designing adaptive step-size rules for more general stochastic constrained problems.
Extending to distributed optimization, where each agent may have very different smoothness
properties.
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Free Draft-and-Verification: Toward Lossless Parallel Decoding for Diffusion
Large Language Models

Shutong Wu, and Jiawei Zhang
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@ Diffusion Large Language Models (DLLMs): Preliminaries and Challenges
@® Our Solution to the Dilemma of Inference Efficiency and Performance

© Experiments on Math Reasoning and Code Generation Tasks

O Conclusion and Future Work
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Preliminaries W

@ Autoregressive Language Modeling

po(w) =TTy po(a']2") |
the i-th token z; conditional on all previous token x<*
usually parameterized by causal-attention Transformers
GPT, Gemini, Llama, Qwen, DeepSeek, etc.
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Preliminaries W

@® (Masked) Diffusion Language Modeling

forward process: progressively replaces each unmasked token in the original sequence z
independently to a special mask token m

probability of being masked controlled by a noise schedule oy

a; monotonically decreasing w.r.t. t € [0,1]; g = 1,04 =0

a(aelro) =TTy aileh) =TT, Cat (af; o + (1 — ay)m)

x}: the i-th token at time level ¢
once a token is masked at s € [0,1], it will remain masked at V¢ € [s, 1]
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Preliminaries W

@® (Masked) Diffusion Language Modeling
reverse process: recover the original sequence from an all-mask sequence
for s < t, we have q(xs|xs, x0) = [[,L; ¢z}, xf)
for each token,

q(@iloy, 7p) = gq(ilay, xh)a(la) /q(zi]ag)

Cat(al;z?) if 20 #m
| Cat(a; Grdmtlaacadsh) if g = m

train a model fy to estimate xo from xz; (usually with ELBO as objective), and induce the
reverse process for each token as

po(ailzy) = (e, 75 = fo(i, 1))

{Cat(mé;xi) if 20 #m

- Cat(xi' (1—a)m+(as—ae) fi(ze,t) )

i
; o if z; =m

once a token is unmasked at ¢, it will remain unchanged at Vs € [0, ¢]
static decoding: decode token with highest probability at each step
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Preliminaries W

@® (Masked) Diffusion Language Modeling

usually parameterized by bidirectional-attention Transformers
comparable performance with AR LLMs
challenges:

® good performance requires more decoding steps (usually equal to the sequence length)
® slower decoding due to the bidirectional attention

® parallel decoding: decode multiple tokens at each step, but usually with non-trivial
performance drop
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Lossless Parallel Decoding
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@ Our solution: self-verifiable lossless parallel decoding
® Multiple parallel-decoded candidates from the estimated distribution at current step
© At next step, batch forward and decode one more step on each candidate, and compare

with the previous candidates to verify correctness
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FreeDave: Lossless Parallel Decoding \/

Static Decoding

Prompt:

Step 0: <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask>
Step 1: <mask> <mask> <mask> <mask> <mask> <mask> <mask>
Step 2: <mask> <mask> <mask> <mask> <mask> <mask>
Step 3: <mask> <mask> <mask> <mask> <mask>
Step 4: <mask> <mask> <mask> <mask>

Step 5: <mask> <mask> <mask>

Step 6: <mask> <mask>

Step 7: <mask>

Step 8:
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FreeDave:

Lossless Parallel Decoding

FreeDave Decoding

Prompt:

Step 0: <mask>
V-Step 1: <mask>
D-Step 1: <mask>

<mask>
<mask>
<mask>
V-Step 2: <mask>
<mask>
<mask>
<mask>
D-Step 2: <mask>

<mask>
<mask>
<mask>
<mask>
<mask>
<mask>
<mask>
<mask>
<mask>
<mask>
<mask>

He <mask>
He obtained

He obtained
V-Step 3: He <mask>
He obtained
He obtained
He obtained

<mask> <mask> <mask> <mask> <mask> <mask>

<mask> doctoral <mask> <mask> <mask> <mask>
<mask> doctoral <mask> <mask> <mask> <mask>
<mask> doctoral degree <mask> <mask> <mask>

his doctoral degree <mask> <mask> <mask>

his doctoral degree <mask> 1905 <mask>

<mask> doctoral degree <mask> <mask> <mask> &

his doctoral degree <mask> <mask> <mask> &——

his doctoral degree <mask> 1905 <mask> é———
his doctoral degree in 1905 <mask>
in <mask>

in <mask>

in <mask>

in .

in <mask> &—
in <mask> ¢~
in — ™
in

@candidate token @target token w/ predicted distribution
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FreeDave: Lossless Parallel Decoding \/

@ Theoretically, we can prove that FreeDave generates the same sequence as static decoding
that decodes one token with the highest probability at each step.

® Additionally, with a large enough draft size, FreeDave is guaranteed to find the optimal
path with the fewest decoding steps.
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Experiments on Math Reasoning Tasks Y

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on MATH500.

Throughput over time Throughput over NFEs

: o,

Model Sampling Acc (%) T (#tokens/s) 1 (#tokens) 1

Static 40.00 23.02 0.91
Dream-7B-Instruct | Parallel 37.00 (-3.00) 16.73 (0.73) 1.88 (2.07x)
FreeDave 40.20 (+0.20) 30.00 (1.30x) 2.63 (2.89x)

Static 74.20 7.26 0.26
TraDo-4B-Instruct | Parallel 68.80 (-5.40) 18.94 (2.61x) 0.61 (2.35x)
FreeDave 76.40 (+2.20) 16.36 (2.25x%) 0.67 (2.58x)

Static 76.40 7.10 0.28
TraDo-8B-Instruct | Parallel 74.00 (-2.40) 16.11 (2.27x) 0.60 (2.14x)
FreeDave 77.60 (+1.20) 15.99 (2.25%) 0.66 (2.36x)
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Experiments on Math Reasoning Tasks Y

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on GSM8K.

Throughput over time Throughput over NFEs

: o,

Model Sampling Acc (%) T (#tokens/s) 1 (#tokens) 1

Static 79.61 20.99 0.83
Dream-7B-Instruct | Parallel 68.16 (-11.45) 16.61 (0.79x) 1.81 (2.18x%)
FreeDave 80.21 (+0.60) 27.39 (1.30x) 2.34 (2.82x)

Static 91.58 4.41 0.15
TraDo-4B-Instruct | Parallel 89.08 (-2.50) 9.82 (2.23x%) 0.35 (2.33x)
FreeDave 91.05 (-0.53) 10.03 (2.27x) 0.39 (2.60x)

Static 92.72 3.41 0.12
TraDo-8B-Instruct | Parallel 92.34 (-0.38) 6.17 (1.81x) 0.23 (1.92x)
FreeDave 92.80 (+0.08) 6.92 (2.03x) 0.28 (2.33x)
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Experiments on Math Reasoning Tasks Y

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on AIME2024.

. o Throughput over time Throughput over NFEs
Model Sampling Acc (%) T (#tokens/s) 1 (#tokens) 1
Static 6.67 22.82 0.94
Dream-7B-Instruct | Parallel 3.33 (-3.34) 16.09 (0.71x) 1.92 (2.04x)
FreeDave 3.33 (-3.34) 24.08 (1.06x%) 3.55 (3.78x)
Static 10.00 11.38 0.41
TraDo-4B-Instruct | Parallel 10.00 (+0.00) 20.52 (1.80x) 0.75 (1.83x)
FreeDave 13.30 (+3.30) 26.07 (2.29x%) 1.04 (2.54x)
Static 13.33 15.39 0.51
TraDo-8B-Instruct | Parallel 10.00 (-3.33) 24.00 (1.56x%) 0.86 (1.67x)
FreeDave 16.66 (-+6.66) 29.62 (1.92x) 1.18 (2.31x)
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Experiments on Code Generation Tasks Y

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and

FreeDave decoding for different DLLMs on MBPP.

Model

Throughput over time

. o Throughput over NFEs
Sampling Acc (%) 1 (#tokens/s) 1 (#tokens) 1
Static 46.20 15.49 0.62
Dream-7B-Instruct | Parallel 37.40 (-8.80) 15.36 (0.99x) 1.70 (2.74x)
FreeDave 46.40 (+0.20) 20.32 (1.31x) 1.80 (2.90x)
Static 57.40 1.63 0.06
TraDo-4B-Instruct | Parallel 49.40 (-8.00) 4.28 (2.63x%) 0.14 (2.33x)
FreeDave 56.60 (-0.80) 4.19 (2.57x) 0.15 (2.50x)
Static 63.20 1.80 0.07
TraDo-8B-Instruct | Parallel 57.00 (-6.20) 3.67 (2.04x) 0.13 (1.86x)
FreeDave 63.60 (+0.40) 3.86 (2.14x) 0.15 (2.14x)
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Experiments on Code Generation Tasks Y

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on HumanEval.

Throughput over time Throughput over NFEs

: o,
Model Sampling Acc (%) T (#tokens/s) 1 (#tokens) 1
Static 54.88 17.85 0.72
Dream-7B-Instruct | Parallel 35.37 (-19.51) 15.72 (0.88x) 1.77 (2.46x)
FreeDave 56.09 (+1.21) 24.40 (1.37x) 2.14 (2.97x)
Static 59.76 4.33 0.17
TraDo-4B-Instruct | Parallel 57.32 (-2.44) 7.36 (1.70x%) 0.26 (1.53x)
FreeDave 60.98 (+1.22) 8.74 (2.02x) 0.38 (2.24x)
Static 68.90 2.69 0.12
TraDo-8B-Instruct | Parallel 65.24 (-3.66) 4.57 (1.70x%) 0.22 (1.83x)
FreeDave 68.90 (+0.00) 4.28 (1.59%) 0.26 (2.17x)
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Conclusion and Future Work W

@ FreeDave: bring more speedup, but also overcome the challenge of performance
degradation at the same time.
No modification or extra training required
No extra modules
Self-verifiable, seamless integration with existing DLLMs
Compatible with caching techniques
® When using a very large number of draft steps, a model forward call on a batch of inputs
will take a longer time

Trade-off between time and NFE
Tensor Parallelism or Data Parallelism? Extra communication cost?
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