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Background

• Consider a generic optimization problem:

min
x∈Rd

f(x).

• Suppose f is bounded below and ℓ-Lipschitz smooth, i.e.,

󰀂∇f(x)−∇f(x′)󰀂 ≤ ℓ󰀂x− x′󰀂.

• Two simple but powerful algorithms: gradient descent and stochastic gradient descent:

• GD: xt+1 = xt − ct∇f(xt)
• SGD: xt+1 = xt − ctg

t, where gt is an unbiased estimator of ∇f(xt) with variance σ.
• First-order algorithms: well-suited for large-scale problems, simple steps, especially SGD

using small batch.
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Iteration and Sample Complexity

• For nonconvex problems, Iteration complexity is the number of iterations needed to obtain
an 󰂃-stationary solution:

• Deterministic case: 󰀂∇f(x)󰀂 ≤ 󰂃;
• Stochastic case: E󰀂∇f(x)󰀂 ≤ 󰂃

• For GD, we use ct = 1/ℓ and iteration complexity is O(ℓ/󰂃2).
• For SGD, we choose ct = 󰂃2/ℓσ2 and the sample and iteration complexity are O(ℓσ2/󰂃4).
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Natural Open Problems

• We have some natural open questions:

• For constrained optimization problems, can we still achieve O(1/󰂃2) iteration complexity using
first-order methods?

• For stochastic constrained optimization, can we still achieve O(1/󰂃4) sample and iteration
complexity?

• Suppose the Lipschitz smoothness constants are different x, can we use adaptive stepsize to
accelerate?

• These questions are just very natural extension of textbook results.
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My Previous Works for Deterministic Constrained Optimization

• Consider constrained optimization
min

x∈X,Ax=b
f(x)

where X is a convex, closed set and easy to project,

• We can design a first-order algorithm, only requiring gradient iteration and projection to X with
O(1/󰂃2) iteration complexity.

• This is shown in [Zhang and Luo 2020, proximal],[Zhang and Luo, 2022, global] and [Zhang et al,
2022, iteration]

• I further work on the problem minx∈X,gi(x)≤0 f(x), where gi, i ∈ [m] is convex, X is convex,
closed and easy to project.

• We show it can be solved by first-order method with O(1/󰂃2) iteration complexity, only requiring
gradient iteration and projection on X.
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Stochastic Constrained Optimization

• In the first part of this talk, we design first-order method for stochastic constrained optimization

• We show the optimal sample complexity.

• We also discuss the optimal sample complexity under a variance reduction technique.
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Stochastic Smoothed Primal-Dual Algorithms for Nonconvex Optimization
with Linear Inequality Constraints

Ruichuan Huang, Jiawei Zhang, and Ahmet Alacaoglu
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Introduction to Stochastic Constrained Optimization

We solve

min
x∈X

Eξ∼Ξ[f(x, ξ)]

s.t. Eζ∼Q[A(ζ)x− b] = 0

where X = Hx ≤ h, for some matrix H and vector h.

• Without loss of generality, we assume X is projection-friendly
• Otherwise, we introduce slack variables to rewrite the constraints to be

{x,w | Ax = b,Hx+ w = h,w ≥ 0} and then the inequality constraints are
projection-friendly
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The First Type of Stochastic Oracle

• Assume that for any x, we can pick i.i.d. sample ξ and
• compute the unbiased estimation of ∇f ,Ax− b:

Eξ[󰁥∇f(x; ξ)] = ∇f(x),

Eζ [v(ζ)] = EζA(ζ)x− b,

• Assume that the variance of estimator is bounded by σ2.
• From Arjevani et al. [2023], for unconstrained nonconvex stochastic optimization, the

lower bound of sample complexity under oracle 1 is Ω(󰂃−4)

• Open problem: Can we achieve this lower bound for constrained problems?
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The Second Type of Stochastic Oracle

• Sometimes, we can access stronger oracles.
• We assume that for any i.i.d. sample ξ, we access the unbiased estimation of ∇f ,Ax− b

at two different x1, x2:

Eξ[󰁥∇f(xi; ξ)] = ∇f(xi),

Eζ [v(x
i, ζ)] = Axi − b,

and the variance of the estimator is assumed to be bounded by σ2.
• Commonly used assumption for variance reduction, sometimes impractical, e.g., in

federated learning
• Lower bound under this oracle: Ω(1/󰂃3)

• Open problem: Can we achieve this for constrained optimization?
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An Example: Federated Learning

• Federated learning: m agents, a central server, objective function of agent i:
fi(x) := Eξ∼Pi

f(x; ξ)

• We minimize f(x) =
󰁓

i fi(x)

• A consensus constrained reformulation: minxi−x0=0,i∈[m]

󰁓
i fi(xi)

• agent i controls xi and the server controls x0

• At any time, agent i only has some probability p to be active, i.e., connected to the server

• If connected we can estimate xi − x0, otherwise 0 ∗ xi − 0 ∗ x0
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Continue

• Hence for any x = (x0, x1, · · · , xn), we have an unbiased estimate of x0 − xi

• The first oracle is more practical
• At different times, random sample–the status of connection to server is different
• At time t and t+ 1, the connection is different
• Hence, hard to satisfy oracle 2
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Comparison of Methods

Reference Constraint Oracle Complexity Loops Method
Alacaoglu & Wright [2024] Ax = b 2 󰁨O(ε−3) 1 ALM

Alacaoglu & Wright[2024]
E[c(x, ζ)] = 0,
and x ∈ X where
X is easy to project

2 󰁨O(ε−5) 1 Penalty

Lu et al. [2024]
c(x) = 0,
and x ∈ X where
X is easy to project

2 O(ε−3) 1 Penalty

Li et al. [2024]
E[c(x, ζ)] = 0,
and x ∈ X where
X is easy to project

2 O(ε−5) 2 Penalty∗

This work Ax = b,
and x ∈ X is polyhedral 1 O(ε−4) 1 ALM

This work Eζ [A(ζ)x− b(ζ)] = 0,
and x ∈ X is polyhedral 1 O(ε−4) 1 ALM

This work Ax = b,
and x ∈ X is polyhedral 2 O(ε−3) 1 ALM

∗This method is referred to as a penalty method because the penalty parameter is taken to infinity to ensure feasibility,

and dual updates do not contribute in achieving feasibility.
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Our Contribution

• We design first-order, single-loop algorithms with constant batch size to solve nonconvex
optimization problems with stochastic constraints

• The algorithm is Lagrangian based, does not require large penalty

• optimal sample complexity O(ε−4) under the first stochastic oracle

• optimal sample complexity O(ε−3) under the second stochastic oracle
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Algorithm Design

One influential idea is to use the augmented Lagrangian(AL) method to solve the problem:

Lρ(x,y) = f(x) + 〈Ax− b,y〉+ ρ

2
󰀂Ax− b󰀂2

Then the ALM iteration proceeds for k = 1, 2, · · · by updating

xk+1 ≈ argmin
x∈X

Lρ(x,yk)

yk+1 = yk + η(Axk+1 − b)

However, the ALM may not converge if f is nonconvex
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Algorithm Design

• First recall the deterministic case. Consider the deterministic constrained opt:

min
x∈X,Ax=b

f(x)

• Let K(x, y, z) = Lρ(x, y) +
µ
2 󰀂x− z󰀂2

• Dual ascent: yt+1 = yt + α(Axt − b);

• xt+1 = ProjX(xt −∇xK(xt, yt+1, zt));

• zt+1 = zt + β(xt+1 − zt).
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Interpretation of the Algorithm

• The algorithm can be regarded as an Inexact GD on the Moreau envelope

• The Moreau envelope of our problem is given as

Ψ(zt) = min
x∈X,Ax=b

󰁱
f(x) +

µ

2
󰀂x− zt󰀂2

󰁲

• By Danskin’s Theorem, the gradient of Ψ(z) is given by

∇zΨ(z) = µ(z − x̄(z))

where x̄(z) = argminx∈X,Ax=b

󰀋
f(x) + µ

2 󰀂x− zt󰀂2
󰀌

• The update of x and y can be viewed as an approximation to x̄(z).
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The Potential Function

In the deterministic case (Zhang and Luo [2020]), we can use the following potential function:

Vt = K(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt), where we use

K(x,y, z) = Lρ(x,y) +
µ

2
󰀂x− z󰀂2,

d(y, z) = min
x∈X

Lρ(x,y) +
µ

2
󰀂x− z󰀂2,

Ψ(z) = min
x∈X,Ax=b

󰁱
f(x) +

µ

2
󰀂x− z󰀂2

󰁲
.

• The gradient projection step can reduce K
• The dual ascent step can approximately reduce −d
• The update of z can approximately reduce ψ(z) (Moreau envelope gradient descent).

The potential function Vt is decreasing, then we can show that the convergence of the
algorithm. Denote x∗(y, z) = argminx∈X K(x,y, z), we have

Vt − Vt+1 ≥
1

4τ
󰀂xt − xt+1󰀂2 +

η

2
󰀂Ax∗(yt+1, zt)− b󰀂2 + µ

3β
󰀂zt − zt+1󰀂2.
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Algorithm Design

A natural idea is to directly extend the algorithm to stochastic case.

Stochastic Smoothed and Linearized ALM

Initialize: x0 = z0 ∈ X, y0 ∈ Rm, and ρ ≥ 0.
For t = 0 to T − 1:

1 Sample i.i.d. ζt;
2 yt+1 = yt + ηv(xt, ζt), where v(xt, ζt) is an unbiased estimator of (Axt − b)

3 Sample ξt ∈ Ξ i.i.d. and generate gradient estimate:

G(xt,yt+1, zt, ξt) = ∇xLρ(xt,yt+1; ξt) + µ(xt − zt)

4 xt+1 = projX(xt − τG(xt,yt+1, zt, ξt))

5 zt+1 = zt + β(xt+1 − zt)

End For
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Two Challenges

• The projection breaks unbiased structure:

• Well-known that without constraint X, SGD step is an unbiased estimator of gradient
descent for K

• However, the projection step can break the unbiased structure.
• We do not have a descent lemma for K

• Bounded variance of ∇xK requires boundedness of dual variable y

• The variance is proportional to 󰀂y󰀂
• Need boundedness of y, usually challenging in nonconvex and stochastic settings
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First Challenge: Using Moreau Envelope

• To address the challenge, we consider the Moreau envelope of K

ϕ1/λ(x,y, z) = min
u∈X

󰀋
K(u,y, z) +

λ

2
󰀂u− x󰀂2

󰀌
.

• By Davis and Drusvyatskiy [2019], if the variance for gradient estimation is bounded, we
have descent lemma for ϕ1/λ

• Therefore, we replace K by ϕ1/λ and consider the potential function

ϕ1/λ(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt)

• We can show a descent lemma of this potential function if we can guarantee bounded
variance, i.e., bounded yt
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Controlling 󰀂yt󰀂

• To control 󰀂yt󰀂, we propose a pulling back approach

• For some lower bound My, we set yt+1 = 0 if 󰀂yt+1󰀂 ≥ My.

• This can guarantee the boundedness of yt

• Interestingly, we can show that the potential function is non-increasing after this pulling back step.

• Therefore, we incorporate this in our algorithm.

23 / 66



Our Algorithm

Stochastic Smoothed and Linearized ALM

Initialize: x0 = z0 ∈ X, y0 ∈ Rm, and ρ ≥ 0.
For t = 0 to T − 1:

1 Sample i.i.d. ζt;

2 yt+1 = yt + ηv(xt, ζt), where v(xt, ζt) is an unbiased estimator of (Axt − b)

3 If 󰀂yt+1󰀂 ≥ My, set yt+1 = 0;

4 Sample ξt ∈ Ξ i.i.d. and generate gradient estimate:

Eξt [G(xt,yt+1, zt, ξt)] = ∇xLρ(xt,yt+1) + µ(xt − zt)

5 xt+1 = projX(xt − τG(xt,yt+1, zt, ξt))

6 zt+1 = zt + β(xt − zt)

End For
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Theoretical Guarantee

Theorem
Under oracle 1, run our Algorithm(Dual-Safeguarded Stochastic ALM) with η, τ,β chosen as
Θ(1/

√
T ), we have that E󰀂∇Ψ(zt∗)󰀂 ≤ ε where t∗ is selected uniformly at random from

{1, . . . , T} with T = Θ(ε−4). The sample complexity is O(ε−4).
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Variance Reduction

• Under oracle2, we can use variance reduction technique to reduce the sample complexity

• We replace the gradient projection step of K by a variance reduced SGD called STORM

• Then we can prove the O(1/󰂃3) sample complexity

• This means our framework is flexible to combine different techniques for stochastic optimization
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Stochastic Smoothed and Linearized ALM with STORM

Algorithm: STORM-based Stochastic ALM

Input: ρ ≥ 0, N = T 1/6

Initialize: x0 = z0 ∈ X, y0 ∈ Rm, 󰁥∇f0 =
1
N

󰁓N
i=1∇f(x0, ζi)

For t = 0 to T − 1:
1 yt+1 = yt + η(Axt − b)

2 Compute: G(xt,yt+1, zt) = 󰁥∇ft +A⊤yt+1 +A⊤(Axt − b) + λ(xt − zt)
3 xt+1 = projX (xt − τG(xt,yt+1, zt))

4 zt+1 = zt + β(xt − zt)

5 Sample ξt+1 ∼ Ξ i.i.d., update gradient:

󰁥∇ft+1 = ∇f(xt+1, ξt+1) + (1− α)
󰀓
󰁥∇ft −∇f(xt, ξt+1)

󰀔
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Theoretical Results

Theorem
Under oracle 2, run our Algorithm(STORM-based Stochastic ALM) with η, τ,β chosen as
Θ(T−1/3), we have that E󰀂∇Ψ(zt∗)󰀂 ≤ ε where t∗ is selected uniformly at random from
{1, . . . , T} with T = Θ(ε−3). The sample complexity is O(ε−3).
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Why GRPO Needs Normalization: A Local-Curvature Perspective on
Adaptive Gradients

Cheng Ge∗, Heqi Yin∗, Hao Liang, and Jiawei Zhang
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LLM Reasoning

• Large language model (LLM) have achieved remarkable success.

• LLM reasoning, e.g., LLM for maths, coding has become an active research topic.

• Reinforcement learning (RL) and policy optimization provide powerful tools for post-training LLMs
to improve reasoning capabilities.

• Among existing approaches, Group Relative Policy Optimization (GRPO) demonstrates strong
empirical performance.

• Main message

GRPO ⇔ gradient descent with adaptive stepsizes
GRPO adapts to local curvature/local Lipschitz smoothness.
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The Evolution of LLM Training for Reasoning

Traditional Approaches:
• Supervised Fine-Tuning (SFT)
• Reinforcement Learning from Human Feedback (RLHF) with learned reward models
• PPO with value function (critic model)

Challenges:
• SFT: Cannot capture reasoning processes
• RLHF: Reward model bias
• PPO: High memory and computational resources
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Problem Setting

• Aim to train a policy πθ to generate the next token in an LLM.

• Initial state: question q ∈ Q = {q1, . . . , qn}.
• Objective

J(θ) :=
1

n

n󰁛

i=1

Ji(θ) =
1

n

n󰁛

i=1

Eo∼πθ(·|qi)[r(o, qi)] (1)

• For a question q, the policy gradient:

T󰁛

t=0

Eπθ(at|st)[∇θ log πθ(at | st) ·Qπθ (st, at)] ,

where Qπ(s, a) is the Q-value function.

• Need a critic model to approximate Q.

• Memory-inefficient, inspiring critic-free methods.
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Critic-Free Methods

• In many reasoning tasks, rewards are only available after the final token, e.g., whether the
answer is correct

• The environment can be viewed as a one-step MDP/bandit.

response o ∼ πθ(·|q)
reward r(q, o) ∈ {0, 1}

• Focus on the one-step MDP (bandit) setting.
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Policy Gradient, REINFORCE, and GRPO

• Objective Function:

J(θ) =
1

n

n󰁛

i=1

Ji(θ) =
1

n

n󰁛

i=1

Eo∼πθ(·|qi)[r(qi, o)]

• Given current iterate θt−1, sample q ∈ Q, an answer o ∼ πθ(o | q) and compute the (unbiased)
stochastic gradient

ĝt := ∇ log πθt−1
(o | q) · r(q, o)

• Stochastic policy gradient
θt = θt−1 − ηĝt

• Unbiased, but high variance

• Variance-reduction methods such as REINFORCE are therefore required
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REINFORCE

• Sample K responses: {o1, . . . , oK}
• Compute rewards: {r1, . . . , rK} with rk = r(ok).
• Calculate baseline:

r̄ =
1

K

K󰁛

k=1

rk.

• Advantage function: Ak = rk − r̄

• Update parameters:

θt = θt−1 + η

K󰁛

k=1

∇θ log πθt−1(ok|qi) ·Ak.

• Remark: If we have infinitely many samples, reinforce and stochastic policy gradient
methods are equivalent, both equivalent to full policy gradient method
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Group Relative Policy Optimization (GRPO)

• GRPO further normalizes the advantages.

• Given prompt/question q, compute the sample variance of rewards:

σ2
r =

1

K

K󰁛

k=1

(rk − r̄)2.

• Define normalized advantages: Ak = rk−r̄
σr

.

• Policy update:

θt = θt−1 + η

K󰁛

k=1

∇θ log πθt−1(ok|q) ·Ak.

• GRPO rescales updates by the reward standard deviation.

• Open Question:

Why does this normalization yield such strong empirical performance?
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Additional Notation and Assumptions

• Assumption 1: Unique correct answer per question

r(qi, oj) =

󰀫
1 if j = a∗i (correct answer)
0 otherwise

• Success probability. The probability of generating the correct answer is

π∗
θ(i) = πθ(oa∗i | qi).

37 / 66



Deterministic Version

• The baseline reward r̄ is already known to reduce variance.

• Main focus: effect of standard deviation (STD) normalization.

• To isolate this effect, we consider the deterministic versions of PG, REINFORCE, and GRPO.

• Specifically, we assume access to infinitely many samples from πθt−1(o | qi), allowing us to
compute the full gradient of J(θ).

• Reinforce is equivalent to full policy gradient method.

• The update of REINFORCE and GRPO simplify and can be compared directly.

38 / 66



Algorithm Comparison: REINFORCE vs GRPO

REINFORCE (Vanilla PG)
1: Input: learning rate η, initial parameters θ0
2: for t = 1 to T do
3: for each question i do
4: θt ← θt−1 +

η
N ∇Ji(θt−1)

5: end for
6: end for
7: Return: πθT

Update form:

θt ← θt−1 + η π∗
θ(i)(1− π∗

θ(i))xi,ai .

GRPO (With Normalization)
1: Input: learning rate η, initial parameters θ0
2: for t = 1 to T do
3: for each question i do
4: θt ← θt−1 +

η
N

∇Ji(θt−1)󰁴
π∗
θt−1

(i)(1−π∗
θt−1

(i))

5: end for
6: end for
7: Return: πθT

Key Difference: GRPO normalizes each
gradient by the STD .
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Log-Linear Parametrization and GRPO Updates

Policy parametrization:

πθ(oj | qi) =
exp

󰀃
x⊤
i,jθ

󰀄

󰁓K
l=1 exp

󰀓
x⊤
i,lθ

󰀔 ,

where xi,j ∈ Rd is the feature vector for the pair (qi, oj).
REINFORCE update:

θt ← θt−1 + η
󰁫
π∗
θt−1

(i)
󰀃
1− π∗

θt−1
(i)

󰀄
xi,ai

− π∗
θt−1

(i)
󰁛

j ∕=ai

πθt−1
(oj | qi)xi,j

󰁬
.

GRPO update:

θt ← θt−1 + η

󰀥󰁴
π∗
θt−1

(i)
󰀃
1− π∗

θt−1
(i)

󰀄
xi,ai

−
󰁵

π∗
θt−1

(i)

1−π∗
θt−1

(i)

󰁛

j ∕=ai

πθt−1(oj | qi)xi,j

󰀦
.

Observation: GRPO adaptively rescales the gradient via the local variance.
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Core Discovery: Variance = Local Curvature

Theorem (Local Smoothness Bound)

Under log-linear policy parametrization, for any question i and θ ∈ Rd:

󰀂∇2Ji(θ)󰀂 ≤ 4X2
max · π∗

θ(i)
󰀃
1− π∗

θ(i)
󰀄

󰁿 󰁾󰁽 󰂀
Reward variance on qi

where Xmax = maxi∈[n] 󰀂Xi󰀂 is the maximum feature matrix norm.

Corollary (Global Smoothness)

For all i ∈ [n] and θ ∈ Rd,
󰀂∇2Ji(θ)󰀂 ≤ X2

max.

Thus, Ji(θ) is globally X2
max-smooth.

Key Insight: The local curvature of Ji(θ) scales directly with the reward variance. Hence, GRPO
adaptively adjusts step sizes to match local Lipschitz smoothness, while REINFORCE uses a fixed step
size.
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Local Curvature Stability

Lemma (Non-uniform Local Smoothness)

Under Assumption 1, for all i ∈ [n] and θ ∈ Rd, Ji(θ) is

5

2
X2

max ·
󰁴
π∗
θ(i)

󰀃
1− π∗

θ(i)
󰀄

smooth over the ball B
󰀓
θ, 1

Xmax
·
󰁴
π∗
θ(i)

󰀃
1− π∗

θ(i)
󰀄 󰀔

.

Interpretation:
• Curvature remains bounded within a neighborhood whose radius scales with

√
variance.

• With step size η = 1
2X2

max
, GRPO updates remain inside this stable region.

• Local smoothness guarantees hold throughout training.

Implication

Normalization in GRPO automatically constrains updates to regions where curvature estimates are
valid, enhancing stability.
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An Additional Assumption

• Based on the previous results, we can establish the convergence rate of GRPO in the
single-question setting.

• To extend to multiple questions, we introduce a technical condition
• Assumption 2 (Gradient Orthogonality). For any i ∕= j,

∇Ji(θ)
⊤∇Jj(θ) = 0.

The gradients corresponding to different questions are mutually orthogonal.
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Convergence Analysis: REINFORCE

Theorem (Convergence of REINFORCE)

Under Assumptions 1–2 and with step size η = 1
X2

max
, the following holds:

Ji(θt)− Ji(θt−1) ≤ − 1

2X2
max

󰀂∇Ji(θt−1)󰀂2.

Moreover,
T󰁛

t=1

󰀂∇Ji(θt)󰀂2 ≤ 2(1− π∗
θ0(i))X

2
max,

and the iteration complexity satisfies

min
t∈[T ]

󰀂∇Ji(θt)󰀂2 ≤
2(1− π∗

θ0
(i))X2

max

T
.

Implication: REINFORCE achieves a convergence rate that does not depend on the reward variance
during training.
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Convergence Analysis: GRPO

Theorem (Convergence of GRPO)

Under Assumptions 1–2 and with step size η = 1
2X2

max
, we have

Ji(θt)− Ji(θt−1) ≤ − 3

8X2
max Ci(t)

󰀂∇Ji(θt−1)󰀂2,

where Ci(t) ≤
󰁴
π∗
θt
(i)

󰀃
1− π∗

θt
(i)

󰀄
. Moreover,

T󰁛

t=1

󰀂∇Ji(θt)󰀂2 ≤ 2(1− π∗
θ0(i))X

2
max ·

8

3T

T−1󰁛

t=0

Ci(t),

and

min
t∈[T ]

󰀂∇Ji(θt)󰀂2 ≤
2(1− π∗

θ0
(i))X2

max

T
· 8

3T

T−1󰁛

t=0

Ci(t).
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Convergence Analysis: GRPO

Recall Ci(t) ≤
󰁴

π∗
θt
(i)

󰀃
1− π∗

θt
(i)

󰀄
., and

min
t∈[T ]

󰀂∇Ji(θt)󰀂2 ≤
2(1− π∗

θ0
(i))X2

max

T
· 8

3T

T−1󰁛

t=0

Ci(t).

Implications:
• The factor 8

3T

󰁓
tCi(t) < 1 in most practical cases, implying faster convergence than

REINFORCE.
• When π∗

θ(i) ≪
1
2 (hard problems), GRPO accelerates learning significantly.

• When π∗
θ(i) ≈ 1 (near-perfect policy), gradients are already small, so GRPO and

REINFORCE behave similarly.
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Empirical Validations

(a) Gradient Cosine Similarities
Mean | cos(θ)| = 0.088± 0.064

(b) Inverse CDF of Cosine Similarities
90% of gradient pairs | cos(θ)| < 0.15

CurvatureâĂŞVariance Correlation

Time Lag Pearson Correlation Significance

Same iteration 0.342 p < 0.01
Different iterations -0.028 p = 0.18 (n.s.)

Findings: Gradients are nearly orthogonal across prompts, and curvature is significantly correlated with
reward variance.
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Experimental Setup

Model Configuration

• Base model: Qwen2.5-Math-1.5B

• Fine-tuning via LoRA (rank = 16, α = 32)

• K = 8 generations per prompt

Dataset Stratification

• GSM8K training set partitioned by difficulty

• Easy: 4,695 examples

• Hard: 1,909 examples

• Difficulty defined by solution complexity

Normalization Variants

• Nstd: Standard GRPO (with variance normalization)

• Nno-std: GRPO without normalization
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GSM8K Results: Easy vs. Hard Questions
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Easy Subset: Low-Variance Regime

• Final accuracy: Nstd (92%) > Nno-std (91%).

• Normalization yields small but consistent
gains.
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Hard Subset: High-Variance Regime

• Final accuracy: Nstd (81%) ≫ Nno-std
(76%).

• GRPO significantly outperforms the
unnormalized variant.

Observation: The benefit of normalization is smallest near ≈ 50% accuracy (maximum Bernoulli
variance) and grows as training moves away from this regime.
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Remarks

• For hard questions, the initial accuracy is around 20%, far below 50%.
⇒ GRPO accelerates learning substantially in the early phase.

• For easy questions, the initial accuracy is close to 50%.
⇒ GRPO offers little speedup over REINFORCE in this regime.

• As accuracy becomes high, gradients diminish in magnitude.
⇒ All methods progress slowly, with GRPO still slightly outperforming REINFORCE.
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Future Problems

• Today we studied stochastic constrained optimization and adaptive step sizes guided by local
Lipschitz smoothness.

• Natural extensions include:

• Relaxing the gradient orthogonality assumption: prompts may exhibit correlated gradients
with heterogeneous smoothness.

• Designing adaptive step-size rules for more general stochastic constrained problems.
• Extending to distributed optimization, where each agent may have very different smoothness

properties.

51 / 66



Free Draft-and-Verification: Toward Lossless Parallel Decoding for Diffusion
Large Language Models

Shutong Wu, and Jiawei Zhang
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Overview

1 Diffusion Large Language Models (DLLMs): Preliminaries and Challenges
2 Our Solution to the Dilemma of Inference Efficiency and Performance
3 Experiments on Math Reasoning and Code Generation Tasks
4 Conclusion and Future Work
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Preliminaries

1 Autoregressive Language Modeling
• pθ(x) =

󰁔L
i=1 pθ(x

i|x<i)
• the i-th token xi conditional on all previous token x<i

• usually parameterized by causal-attention Transformers
• GPT, Gemini, Llama, Qwen, DeepSeek, etc.
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Preliminaries

2 (Masked) Diffusion Language Modeling
• forward process: progressively replaces each unmasked token in the original sequence x

independently to a special mask token m
• probability of being masked controlled by a noise schedule αt

• αt monotonically decreasing w.r.t. t ∈ [0, 1]; α0 = 1,α1 = 0
• q(xt|x0) =

󰁔L
i=1 q(x

i
t|xi

0) =
󰁔L

i=1 Cat
󰀃
xi
t;αtx

i
0 + (1− αt)m

󰀄

• xi
t: the i-th token at time level t

• once a token is masked at s ∈ [0, 1], it will remain masked at ∀t ∈ [s, 1]
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Preliminaries

2 (Masked) Diffusion Language Modeling
• reverse process: recover the original sequence from an all-mask sequence
• for s < t, we have q(xs|xt, x0) =

󰁔L
i=1 q(x

i
s|xi

t, x
i
0)

• for each token,

q(xi
s|xi

t, x
i
0) = q(xi

t|xi
s, x

i
0)q(x

i
s|xi

0)/q(x
i
t|xi

0)

=

󰀫
Cat(xi

s;x
i
t) if xi

t ∕= m
Cat(xi

s;
(1−αt)m+(αs−αt)x

i
0

1−αt
) if xi

t = m

• train a model fθ to estimate x0 from xt (usually with ELBO as objective), and induce the
reverse process for each token as

pθ(x
i
s|xi

t) = q(xi
s|xi

t, x
i
0 = fθ(x

i
t, t))

=

󰀫
Cat(xi

s;x
i
t) if xi

t ∕= m
Cat(xi

s;
(1−αt)m+(αs−αt)f

i
θ(xt,t)

1−αt
) if xi

t = m

• once a token is unmasked at t, it will remain unchanged at ∀s ∈ [0, t]
• static decoding: decode token with highest probability at each step
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Preliminaries

2 (Masked) Diffusion Language Modeling
• usually parameterized by bidirectional-attention Transformers
• comparable performance with AR LLMs
• challenges:

• good performance requires more decoding steps (usually equal to the sequence length)
• slower decoding due to the bidirectional attention
• parallel decoding: decode multiple tokens at each step, but usually with non-trivial

performance drop
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FreeDave: Lossless Parallel Decoding

1 Our solution: self-verifiable lossless parallel decoding
2 Multiple parallel-decoded candidates from the estimated distribution at current step
3 At next step, batch forward and decode one more step on each candidate, and compare

with the previous candidates to verify correctness
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FreeDave: Lossless Parallel Decoding
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FreeDave: Lossless Parallel Decoding
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FreeDave: Lossless Parallel Decoding

1 Theoretically, we can prove that FreeDave generates the same sequence as static decoding
that decodes one token with the highest probability at each step.

2 Additionally, with a large enough draft size, FreeDave is guaranteed to find the optimal
path with the fewest decoding steps.
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Experiments on Math Reasoning Tasks

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on MATH500.

Model Sampling Acc (%) ↑ Throughput over time
(#tokens/s) ↑

Throughput over NFEs
(#tokens) ↑

Dream-7B-Instruct
Static 40.00 23.02 0.91
Parallel 37.00 (-3.00) 16.73 (0.73) 1.88 (2.07×)

FreeDave 40.20 (+0.20) 30.00 (1.30×) 2.63 (2.89×)

TraDo-4B-Instruct
Static 74.20 7.26 0.26
Parallel 68.80 (-5.40) 18.94 (2.61×) 0.61 (2.35×)

FreeDave 76.40 (+2.20) 16.36 (2.25×) 0.67 (2.58×)

TraDo-8B-Instruct
Static 76.40 7.10 0.28
Parallel 74.00 (-2.40) 16.11 (2.27×) 0.60 (2.14×)

FreeDave 77.60 (+1.20) 15.99 (2.25×) 0.66 (2.36×)
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Experiments on Math Reasoning Tasks

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on GSM8K.

Model Sampling Acc (%) ↑ Throughput over time
(#tokens/s) ↑

Throughput over NFEs
(#tokens) ↑

Dream-7B-Instruct
Static 79.61 20.99 0.83
Parallel 68.16 (-11.45) 16.61 (0.79×) 1.81 (2.18×)

FreeDave 80.21 (+0.60) 27.39 (1.30×) 2.34 (2.82×)

TraDo-4B-Instruct
Static 91.58 4.41 0.15
Parallel 89.08 (-2.50) 9.82 (2.23×) 0.35 (2.33×)

FreeDave 91.05 (-0.53) 10.03 (2.27×) 0.39 (2.60×)

TraDo-8B-Instruct
Static 92.72 3.41 0.12
Parallel 92.34 (-0.38) 6.17 (1.81×) 0.23 (1.92×)

FreeDave 92.80 (+0.08) 6.92 (2.03×) 0.28 (2.33×)

60 / 66



Experiments on Math Reasoning Tasks

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on AIME2024.

Model Sampling Acc (%) ↑ Throughput over time
(#tokens/s) ↑

Throughput over NFEs
(#tokens) ↑

Dream-7B-Instruct
Static 6.67 22.82 0.94
Parallel 3.33 (-3.34) 16.09 (0.71×) 1.92 (2.04×)

FreeDave 3.33 (-3.34) 24.08 (1.06×) 3.55 (3.78×)

TraDo-4B-Instruct
Static 10.00 11.38 0.41
Parallel 10.00 (+0.00) 20.52 (1.80×) 0.75 (1.83×)

FreeDave 13.30 (+3.30) 26.07 (2.29×) 1.04 (2.54×)

TraDo-8B-Instruct
Static 13.33 15.39 0.51
Parallel 10.00 (-3.33) 24.00 (1.56×) 0.86 (1.67×)

FreeDave 16.66 (+6.66) 29.62 (1.92×) 1.18 (2.31×)
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Experiments on Code Generation Tasks

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on MBPP.

Model Sampling Acc (%) ↑ Throughput over time
(#tokens/s) ↑

Throughput over NFEs
(#tokens) ↑

Dream-7B-Instruct
Static 46.20 15.49 0.62
Parallel 37.40 (-8.80) 15.36 (0.99×) 1.70 (2.74×)

FreeDave 46.40 (+0.20) 20.32 (1.31×) 1.80 (2.90×)

TraDo-4B-Instruct
Static 57.40 1.63 0.06
Parallel 49.40 (-8.00) 4.28 (2.63×) 0.14 (2.33×)

FreeDave 56.60 (-0.80) 4.19 (2.57×) 0.15 (2.50×)

TraDo-8B-Instruct
Static 63.20 1.80 0.07
Parallel 57.00 (-6.20) 3.67 (2.04×) 0.13 (1.86×)

FreeDave 63.60 (+0.40) 3.86 (2.14×) 0.15 (2.14×)

62 / 66



Experiments on Code Generation Tasks

Table: Detailed comparison of performance and efficiency with static decoding, parallel decoding, and
FreeDave decoding for different DLLMs on HumanEval.

Model Sampling Acc (%) ↑ Throughput over time
(#tokens/s) ↑

Throughput over NFEs
(#tokens) ↑

Dream-7B-Instruct
Static 54.88 17.85 0.72
Parallel 35.37 (-19.51) 15.72 (0.88×) 1.77 (2.46×)

FreeDave 56.09 (+1.21) 24.40 (1.37×) 2.14 (2.97×)

TraDo-4B-Instruct
Static 59.76 4.33 0.17
Parallel 57.32 (-2.44) 7.36 (1.70×) 0.26 (1.53×)

FreeDave 60.98 (+1.22) 8.74 (2.02×) 0.38 (2.24×)

TraDo-8B-Instruct
Static 68.90 2.69 0.12
Parallel 65.24 (-3.66) 4.57 (1.70×) 0.22 (1.83×)

FreeDave 68.90 (+0.00) 4.28 (1.59×) 0.26 (2.17×)
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Conclusion and Future Work

1 FreeDave: bring more speedup, but also overcome the challenge of performance
degradation at the same time.

• No modification or extra training required
• No extra modules
• Self-verifiable, seamless integration with existing DLLMs
• Compatible with caching techniques

2 When using a very large number of draft steps, a model forward call on a batch of inputs
will take a longer time

• Trade-off between time and NFE
• Tensor Parallelism or Data Parallelism? Extra communication cost?
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